w2y BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT }*

Module 1:
INTRODUCTION TO COMPUTER

HARDWARE AND SOFTWARE

Swetha M S
Asst. Professor
Dept. of ISE
BMSIT&M

Department of Information Science and Engg
Transform Here

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT
What is computer? *

A Computer is device that can automatically
performs a set of instructions. The computer takes
as input these instructions as a single unit, uses
them to manipulate the data, and outputs the
results in user-specified ways. The processing is
fast, accurate and consistent, and is generally
achieved without significant human intervention.

INPUT DATA PROCESS DATA STORES DATA AND OUTPUTS INFORMATIC
NFORMATION

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT *"

I‘IIStOry of LompUter

Apaoys- 100 EC

Babbage's computer- 18305
Boolean legc- 1830

: ---
-
£

Holierifh's lecine tabutatoe - 1830
Analog computer- 1927
EDVAC- 1944

ENIAC- 1947

Shderule- 1817
Mechanical calculaioe - 1642

Auromatic loom {punched cards)

- 1804

L]

htegraied crouit- ez 188
UNIVAC - 1951
Microprocessor— 1971

Aliar 8880 - 1975

Apglell - 1977

' . |B PC - 1981
Véorid Wide Wed - 18805

The Mechanical Age

1600-1900

The Abacus

Adding Machine

Analytical Engine

1900-1945

BMS

INSTITUTE OF TECHNOLOGY AND MANAGEMENT ""

COMPUTER GENERATIONS

Generation

First.

Third.

Fourth

Fifth

Vacuum tubes Magnetic drums for memory

Magnetic cores, disks, punched cards and

Transistors .
printouts
Integrated circuits ' .
(ICs) Keyboard, monitor and operating system

Microprocessors Networking

ULSI Nano

technology. Mainly unclear

Department of Information Science and Engg
Transform Here

_,r-\\.

et R o

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7
Vacuum Tubes: The First Generation

» Memory requirements were met by magnetic drums (forerunner of today's
hard disk).

» Because of the size of vacuum tubes, first generation computers took up a
lot of space.

» They also consumed enormous amounts of power and generated a lot of
heat. In spite of housing these computers in air-conditioned enclosures,
frequent breakdowns were common.

» The ENIAC used 18,000 vacuum tubes, occupied 1800 sq. ft. of room space
and consumed 180KW of power.

» Machines of this generation were prohibitively expensive to buy and
maintain.

» First-generation computers were programmed using a first-generation
language-machine language.

» Program input was provided by punched cards and output was obtained on

eloed Comeia Department of Information Science and Engg

Transform Here

1AM
IIRILIT

‘

000070000 4000000000 00

R e =
AR

b

40t omm
LLLLLIY]

.o
-
.
-
o
-
<
o
-
o
-
<
<
-
o
-
o
-
o

\\

!
\\‘!|\|||"

\

b
- -

Replacing a bad tube meant checking among ENTAC's 19,000 possibilities.

Department of Information Science and Engg
Transform Here

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Transistors: The Second Generation

» Compared to vacuum tubes, transistors were faster, smaller and
consumed less power smaller magnetic cores also replaced the first-
generation magnetic drums.

» Even though transistor generated less heat, second-generation
computers still needed air-conditioning.

» The input-output mechanism however remained largely unchanged.

» Second-generation computers were programmed using a symbolic
or assembly language.

» The computers also implemented the stored program concept

which allowed both program and data to reside in memory.

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT &

Transistors: The Second Generation

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

1402 Card Read Punch 1407 Console 1401 CPU 720 Tape Drive 1403 Line Printer

Department of Information Science and Engg
Transform Here

_,r-u.‘.

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Integrated Circuits: The Third Generation

» By virtue of miniaturization, computers consequently got smaller,
cheaper and energy efficient. For these reasons, they could be seen
in several medium-sized organizations.

» This generation adopted a keyboard and monitor to interact with
the user.

» Memory capacity increased substantially and the magnetic hard
disk was used for secondary storage.

» Third-generation computers also had an operating system, whichis
a special program meant to control the resources of thecomputer.

» By virtue of a feature known as time sharing, the computercould
run programs invoked by multiple users.

» The existing programming languages were supplemented by
BASIC, C, C++ and Java.

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

Integrated Circuits: The Third Generation

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT +*

The Microprocessor: The Fourth Generation

» The integration of components went several steps ahead. Using L.SI and
VLSI technology, it is now possible to have the entire CPU, its
associated memory and input/output control circuitry on a single chip.

» Intel introduced the 4004 microprocessor in 1971 and improvement in
the usual parameters (like speed, heat generation, size, etc.) continues
at a frenetic pace to this day.

» Microprocessors have invaded our homes to drive desktops, laptops,
smartphones,microwave ovens and washing machines.

» Laptops and smartphones offer gigabytes (GB) of memory compared
to a few megabytes (MB) that were available in the early days of this
generation.

» Operating systems have moved from the rudimentary MSDOS to a
mouse based Graphical User Interface (GUI) like Windows. More
advanced systems like Linux are now available for desktops and laptops,
and a variant of it (Android) powers most of our smartphones.

Department of Information Science and Engg
Transform Here

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT }*

The Microprocessor: The Fourth Generation

" microprocesso

fourth generation computer

1971 - today

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT +*

Artificial Intelligence: The Fifth Generation

» The fifth generation represents a vision of the computers of the future. The
conventional parameters of computing (speed, size, energy consumption,
VLSI to ULL.SI, etc.) would continue to improve path-breaking changes in
the way we use computers are also expected.

» Fifth-generation systems should be capable of producing human-like behaviour.
These systems expected to interact with users in natural language and learn from
experience. Speech recognition and speech output should also be possible with
these systems.

» Computer speeds need to make an exponential jump, a feat that would be
possible using quantum computers.

» Computers must be able to perform parallel processing so that multiple
processors concurrently handle different aspects of a problem.

» Neural networks and expert systems have to be developed. These applications
would be able to make decisions and advise humans by analysing data using

human-like intelligence but without using the services of an expert.

Department of Information Science and Engg
Transform Here

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

—

Department of Information Science and Engg
Transform Here

&) BMS INsTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Types of Computers

&3 BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'
1. Microcomputer

e Can be classified into:

*Desktop PCs

*sits on desks, rarely moved, large and
bulky:.

*Memory capacity, graphics capacity and

software availability vary from one
computer to another Used both for
business and home applications

17 Department of Information Science and Engg
Transform Here

& BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

Microcomputer

Portable PCs

*Can be moved easily from place to
place

*Weight may varies

*Small PCs are popular known as
laptop

*Widely used by students, scientist,
reporters, etc

18 Department of Information Science and Engg
Transform Here

%

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT }*

Microcomputer Model

Desktop

Subnotebook

19 i
Transform Here

http://images.google.com.ph/imgres?imgurl=http://img.alibaba.com/photo/11013976/Desktop_Computers.jpg&imgrefurl=http://www.alibaba.com/catalog/11013976/Desktop_Computers.html&h=389&w=540&sz=20&hl=en&start=1&tbnid=TUhiBz7AkAuChM:&tbnh=95&tbnw=132&prev=/images?q%3Ddesktop%2Bcomputers%26gbv%3D2%26svnum%3D10%26hl%3Den
http://images.google.com.ph/imgres?imgurl=http://img.alibaba.com/photo/11013976/Desktop_Computers.jpg&imgrefurl=http://www.alibaba.com/catalog/11013976/Desktop_Computers.html&h=389&w=540&sz=20&hl=en&start=1&tbnid=TUhiBz7AkAuChM:&tbnh=95&tbnw=132&prev=/images?q%3Ddesktop%2Bcomputers%26gbv%3D2%26svnum%3D10%26hl%3Den

)

o

™
(S
Eaar - =

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Microcomputer

* Advantages
*Small size
*Low cost
*Portability
*Low Computing Power
*Commonly used for personal applications

*Disadvantages
*Low processing speed

20 Department of Information Science and Engg
Transform Here

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Uses of Microcomputer

*Word Processing
*‘Home entertainment
*Home banking

*Printing

21 Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT *"

2. Minicomputer

* Medium sized computer

* Also called the minis
*e.g. IBM36, HP9000, etc

* Computing power lies between microcomputer and
mainframe computer

22 Department of Inf
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT *"

From Computer Desktop Encyclopedia
= 1993 The Computer Language Co. Inc.

Terminals

| oo HINNEN | NEEEER

S8 e

—— T

Disk Drives COMPUTER Tape Drives
(CPLIY

23 Department of Information Science and Engg
Transform Here

&3 BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f*’

MiniComputer

*Characteristics
*Bigger size than PCs
*Expensive than PCs
* Multi-User
 Difficult to use
*More computing power than PCs

*Used by medium sized business organizations,
colleges, libraries and banks.

24 Department of Information Science and Engg
Transform Here

& BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f*’

Uses of Minicomputer

e Control of Automated Teller Machine (ATMs)
* Hospital patients registration

* Inventory Control for supermarket

* Insurance claims processing

* Small bank accounting and customer details tracking

25 Department of Information Science and Engg
Transform Here

e

%

12

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Minicomputer

*Advantage
*Cater to multiple users
*Lower costs than mainframes

*Disadvantage
eLarge
*Bulky

26 Department of Information Science and Engg
Transform Here

<) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f*’

3. Mainframe

* Known as enterprise servers

* Occupies entire rooms or floors

* Used for centralized computing

e Serve distributed users and small
servers in a computing network

27 Department of Information Science and Engg
Transform Here

Main Frame

* Large, fast and expensive computer

e Cost millions of dollar
*e.g.IBM3091, ICL39, etc

e Characteristics:

Bigger in size than minicomputers Very expensive

Support a few hundred users simultaneously (Multi-
Users)

Difficult to use
More computing power than minicomputers
Have to be kept in a special air-conditioned room

Used in big business organizations and government
departments

28

&3 BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

Department of Information Science and Engg
Transform Here

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

fnput/ovtpur

controller _ astiaandl; =

Tops controlier.
Mognetic) Disk s1oroge

fope uning |
. = i |

| printors

Card punch

!
Control comyoiu

Control cansole

Magnetic
10p0 units Cord reader

29 Department of Information Science and Engg
Transform Here

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Department of Information Science and Engg
Transform Here

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Mainframe

* Advantage
*Supports many users and instructions
*Large memory

*Disadvantage
*Huge size
*Expensive

31 Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT **

Supercomputer

* Fastest and expensive

* Used by applications for
molecular chemistry, nuclear
research, weather reports, and
advanced physics

* Consists of several computers
that work in parallel as a single
system

32 Department of Information Science and Engg
Transform Here

£

) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT }*

Super Computer

* Advantage
*Speed

* Disadvantage

*Generate a large
amount of heat
during operation

33 Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT *ﬁ

Information Processing System

* DATA is a collection of independent and unorganized facts.

* INFORMATION is the processed and organized data presented in a
meaningful form.

* DATA PROCESSING is the course of doing things in a sequence of steps.

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT +"

Information Processing System

* COMPUTER is an electronic machine that follows a set of instructions in
order that it may be able to accept and gather data and transform these
into information.

Department of Information Science and Engg
Transform Here

PROCESSING

SYSTEM

CABLETY
21% @

"HOW FAR" CAMPAIGN
TOTALVALUE $8.7 MILUON

F;;’D 10 Pg@T

<L

TV SIGMA

67%

INFORMATION

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT *"

Functions of an Information Processing

System

It accepts and gather data. (INPUT)
It processes data to become information. (PROCESSING)
It stores data and information. (STORE)

It presents information. (OUTPUT)

Department of Information Science and Engg
Transform Here

o <

&3 BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f*’

g

Three Major Components of an
Information Processing System

« HARDWARE is the tangible part of a computer system.

* SOFTWARE is the non-tangible part that tells the computer how to do its
job.

* PEOPLEWARE refer to people who use and operate the computer
system, write computer programs, and analyze and design the
information system.

Department of Information Science and Engg
Transform Here

.

na:»
Eaar - =
Bl W N

-'*—0

J BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 4

Basic Units of Measurement

* BIT is a unit of information equivalent to the result of a choice between
only 2 possible alternatives in the binary number system.

* BYTE is a sequence of 8 bits (enough to represent one character of
alphanumeric data) processed as a single unit for information.

Department of Information Science and Engg
Transform Here

w2y BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT }*

Basic Units of Measurement

*A byte can be used to represent a single
character, which can be:

*A letter

*A number

*A special character or symbol, or
*A space

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT +*

_alecirical signals ..

gates

B R
IND D OO1IV] ﬂ
ane hyle of binary code —

A
1:.___ binary code

o
monitor “xﬂ‘f}\n\

electrical slgnal

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT ﬁ*

BITS, BYTES AND WORDS
Uni

1 kilobyte (KB) 1024 bytes Space used by 10 lines of text.

IR el 0019 1024 kilobytes ~ Memory of the earliest PCs

1 gigabyte (GB) 1024 megabytes Storage capacity of a CD-ROM

I terabyte (TB) 1024 gigabytes Capacity of today's hard disks.

1 petabyte (PB) 1024 terabytes Space used for rendering of film Avatar

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT

INSIDE THE COMPUTER

 Secondary Memory
Hard Disk
DVD-ROM Drive it e
- Tape Drive ; P{frftcr
~ Flash Memory ' ,Sc_a_np_eg‘

- FIGURE 1.3 Architecture of a Computer with a Single Processor

ISE

Frasatcm e

oy Transform Here

& BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

THE CENTRAL PROCESSING UNIT (CPU)

»The CPU has evolved from a bulky vacuum tube
based unit of the 1940s to a modern 5cm square
chip that is commonly called the
microprocessor, or simple processor. It
comprises the following components

» Arithmetic and Logic Unit (ALU)

» Control Unit (CU) —
» Special purpose registers | — |
> A clock =

Department of Information Science and Engg
Transform Here

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

PRIMARY MEMORY

The primary memory which includes the following
types:
»Random Access Memory (RAM-SRAM and DRAM)

»Read Only Memory (ROM, PROM, EPROM,
EEIROM)

»Cache Memory (Li, L2 and L3)
»CPU Registers

RAM ROM
Random Access Memory Read Only Memaory

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

SECONDARY MEMORY

The last couple of decades have seen the emergence of
multiple types of storage devices.

»Hard disk including the portable disk (500 GB to 4
TB).

»Magnetic tape (20 TB).

»CD-ROM (700 MB-less than 1 GB).

»>DVD-ROM (4.7 GB and 8.5 GB).

» Blu-ray disk (27 GB and 50 GB).

»Flash memory based on the EEPROM (1 GB to 128
GB).

[)
N - - °
Department of Information Science and Engg
Transform Here

o 3
4

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT

The Hard Disk

- Every disk contains a spindle that holds one or more platters made of
non-magnetic material like glass or aluminium (Fig. 1.4). Each platter has
two surfaces coated with magnetic material.

- Information is encoded onto these platters by changing the direction of
magnetization using a pair of read-write heads available for each platter
surface.

- Eight surfaces require eight heads; they are mounted on a single arm and
cannot be controlled individually.

- Each surface is composed of a number of concentric and serially numbered
tracks.

- There are many tracks bearing the same track number as there are
surfaces. This can then visualize a cylinder comprising all tracks bearing
the same number on each disk surface.

 Thus, there will be as cylinders in the disk as there are tracks on each
usable surface.

> Each track is further broken into sectors or blocks. So, if each track has

.32 blocks and a disk Deparimient of i fomdlon Scienice and Engg blocks per cyllnder

Transform Here

L E
|

Heads
Tt
‘_—

ﬁ

B

FIGURE 1.4 The Hard Disk

Transform Here

S

>
-
pr
Ll
=
Ll
O
<
Z
<
=
Q
z
<
Do
O
@)
—
@)
z
L
O
L
-
[.
O
Ll
b
-
=
-
o)
&
m
aa

Magnetic Tape

A

: ; 2o, Vigwm =Edgo-Viow
> The age-old magnetic tape is still around thanks to the enhancéments that have been
made to this device.

» The basic technology has not changed though; the tape is made of a plastic film with one
side coated with magnetic material.

» Current technology supports capacities of 1 TB or more, but 200 TB tapes are expected
to be launched in the near future.

» The device is portable though because a separate tape drive is required, and most
computers don't have one.

» Data are read from and written to the tape using a read-write head and an erasure head.

» The write operation is preceded by the erasing operation. The data access is sequential.

To locate a file, the tape has to be rewound before a sequential search can begin.

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT ﬁ*

Optical Disks: The CD-ROM, DVD-ROM

» Non-volatile read-only memory, which we saw in the ROM family (including
PROM, EPROM and EEPROM), is also available on optical disks. These
disks, comprising mainly the CD-ROM and DVD-ROM, can hold large
volumes of data (700 MB to 8.5 GB) on inexpensive media.

» CD-R, DVD-R — Data can be recorded only once, CD-RW, DVD-RW — Data
can be recorded multiple times.

» The optical drive uses three motors for the following functions: operating
the tray, spinning the disk and guiding the laser beam.

Department of Information Science and Engg}
Transform Here

&) BMS INSTITUTE OF TECHNOLOGY AND N
Flash Memory

> They are portable, need little power and are quite reliable.

» The memory stick or pen drive is the most common type offlash
memory used on the computer.

» The solid state disk (SSD) a bigger device meant to replacethe
traditional magnetic hard disk. Many small laptops (like Chrome
books) have the operating system and a small set of programs
stored on this online device.

» The third device, the magnetic card, is used mainly in cameras,
but using adapters, they can connect to the USB port aswell.

» The most popular form of this device is the micro-SD card, which is
available in SDHC and SDXC flavours. The SD card offer high
capacities that can go up to 128 GB.

Department of Information Science and Engg
Transform Here

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Floppy Diskette

»The floppy diskette was once the only form of
portable storage that could be carried in the pocket.

» A read/write head actually makes contact with this
disk while it is rotating.

»The tloppy was available in two sizes (5.25" and
3.5"), offering capacities of 1.2 MB and 1.44 MB (yes,
MB not GB), respectively.

Department of Information Science and Engg
Transform Here

PORTS AND CONNECTORS

Universal Serial Bits (USB)
Serial port

Parallel port

Video Graphics Array (VGA) port
digital video interface (DVI)
PS(Personal System)/2 port

NG R W b

VGA/SVGA HDMI Type A
FIGURE 1.6 Common Ports

_
TN
an

<

4

&3 BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f*’

INPUT DEVICES

1. The Keyboard
2. Pointing Devices
3. The Scanner

. Scanner

Joystick
Keyhoard

&P

Mouse

Keyboard

Types of Monitor

CRT MONITOR

LCED MONITOR

.} BMS INSTITUTE OF TECHNOLC
OUTPUT DEVICES

1. The Monitor

2. Impact Printers
> Dot-matrix Printer |

-

= Daisy-wheel Printer

= Line Printer

3. Non-Impact Printers
Laser Printer
Ink-jet Printer

4. Plotters

ation Science and Engg
Transform Here

<) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT }*

Classification of Printers

Printer
|

N

)

Impact Printer Nonﬁmpact

Dalsy Dot-
Wheel l&tﬂ Ekﬂ

Department of Information Science and Engg
Transform Here

i

COMPUTERS IN ANETWORK

- Interconnection of computer is called a
computer network.

- Different ways of connecting computersin
network is called as network topology.

&3 BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

RS

Star

iy Mesh

FIGURE 1.7 Network Topologies
]

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT *"

Network Types

* Local Area Network (LAN)
* Wide Area Network (WAN)

» Technology advances have led to the birth of other types of
networks

» Metropolitan Area Network (MAN)
» Campus Area Network (CAN)
» Personal Area Network (PAN)

e The Internet and internet

Department of Information Science and Engg
Transform Here

12

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

NETWORK HARDWARE

 Network Interface Card
« Hub and Switch
- Bridge and Router

Hub Switch

Department of Information Science and Engg

Transform Here

Wired NIC

@

<) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT &

WHY COMPUTERS NEED SOFTWARE

Software is a collection of code that drives a computer to

perform a related group of tasks. ; ”
SOFTWARE TYPES _, 9

- System software
- Basic Input Output System (BIOS) { mw
» Operating system
= Device driver
- Compilers and associated programs

[1 1 N | « 5
Application software @ ® Q«'O % neD
- Office software Ve @ "9
« Database software a Adobe @ ”(gk (‘"‘3.
- Communications software <gs € s s 3R) Le

Mncrosoft —
e Nl ¢ DlrectX;

Levlrtment Grilnformatice Science .G
Transf

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT **

HISTORY OF C

1960

1967

1970

1972

1978

1989

1990

Traditional C l

|

K&R C

|

ANSI C

A

ANSI/ISO C

International Group

Martin Richards

Ken Thompson

Dennis Ritchie

Kermighan and Ritchie

ANSI Committee

ISO Committee

NAanartmaAant Af InfAarmatinn CAinn~Arn anA EnAan

.

Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT *ﬁ

BASIC STRUCTURE OF C PROGRAMS

Documentation Section

Link Section

Definition Section

Global Declaration Section

main () Function Section

{

Declaration part
Executable part

it

Subprogram section

Function 1

Function 2

Function n

(User-defined functions)

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT &

C Syntax and Hello World

#include <stdio.h>
/* The simplest C Program */
Int main () <

{ <

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

Writing and Running Programs

#include <stdio.h>
/* The simplest C Program */
int main(int argc, char **argv)
{
printf(“Hello world\n”);
return 0;

>

$ cc program name.c

tt.c: In function “main':

tt.c:6: parse error before “x'

tt.c:5: parm types given both in parmlist and separately
tt.c:8: "x"' undeclared (first use in this function)
tt.c:8: (Each undeclared identifier is reported only once
tt.c:8: for each function it appears in.)

tt.c:10: warning: control reaches end of non-void function
tt.c: At top level:

tt.c:11: parse error before “return’

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT &

OK, We’re Back.. What is a Function?

#ipclude <stdio.h>
/*]The simplest C Program *
int main¢int argc, char **argv

printf(“Hello world\n”); l¢
return O;

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT +"

V& PROGRAM USING FUNCTION .

int mul (int a, int b); /*—— DECLARATION

? o MAIN PROGRAM BEGINS /.
main ()

{

int a, b, c3

I
(O}
we

a

b
c

|
[
o

mul (a.,b):
printf ("multiplication of %d and %d

y & MAIN PROGRAM ENDS

——/

is %d",a,b,c);

MUL() FUNCTION STARTS
int mul (int x, int y)
int ps
{
P = X*y;
return(p);
}
/* MUL () FUNCTION ENDS * /

i

Fig. 1.7 A program using a user-defined function

Department of Information Science and Engg
Transform Here

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT %*

EXECUTING A ‘C’PROGRAM

l

Systerm Ready .

¥

Program Code I» -

Enter Program .

Source Program

r

Edit
Source Program

¥

C Compiler Ho—

Compile
Source FProgram

Yes

Object Code

System Library '——-

Link with
Systemm Library

| Input Data '»—’—

7 l Executable Object Code
Execute
Object Code

I Data Error
—

ogic and Data Logie Ernar

Errors 72

No Errors

CORRECT OUTPUT'

B

Stop

D 2partrnent of informaticn Scizrce and Engg nning a C program
Transform Here

<) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT }*

Queries?

Module-2
Managing input/output
Decision Making & Branching

Swetha M S
Dept of ISE
BMSIT&M

Department of ISE BMS Institute of Technology & Mgmt 5-1

Looping statements

* Loop is a control structure that repeats a group
of steps in a program.

— Loop body stands for the repeated statements.

* There are three C loop control statements:
—while, do-while and for.

Department of ISE BMS Institute of Technology & Mgmt 5-2

Comparison of Loop Choices (1/2)

Kind When to Use C Structure

Counting loop | We know how many loop |while, for
repetitions will be needed
In advance.

Sentinel- Input of a list of data ended | while, for
controlled loop |by a special value

End file- Input of a list of data from |while, for
controlled loop |a data file

Department of ISE BMS Institute of Technology & Mgmt 5-3

Comparison of Loop Choices (2/2)

Kind When to Use C Structure
Input validation | Repeated interactive input | do-while
loop of a value until a desired

value Is entered.
General Repeated processing of while, for
conditional data until a desired
loop condition Is met.

Department of ISE BMS Institute of Technology & Mgmt 5-4

SSaniela
==ET—
] :‘k: N P
%,‘ = Pt
o A

The while StatementinC

The syntax of while statement in C:

loopI repetition condition

Loop repetition condition is the condition
which controls the loop.

The statement is repeated as long as the loop
repetition condition is true.

A loop is called an infinite loop if the loop
repetition condition is always true.

Department of ISE BMS Institute of Technology & Mgmt 5-5

Flow diagram —while loop

vest _False | gyit while loop |
. Expression

“~

lTrue

Body of while loop

Figure: Flowchart of while loop

Department of ISE BMS Institute of Technology & Mgmt 5-6

Check the given number is palindrome or n

int main() o

{ int n,temp,digit,rev=0;
printf("enter a integer number\n");
scanf("%d",&n);

temp=n;
while (n!=0)
{ digit=n%10;

n=n/10;

rev=digit+10*rev;
} // while ends
if(temp==rev)

{
printf("%d is a PALINDROME\n",temp);
} //ifends
else
{ printf("%d is not a PALINDROME\n",temp); }
return O;

Department of ISE BMS Institute of Technology & Mgmt 5-7

WAP to check whether the given number is armstrong or not
def: if the given number is equal to the sum of the cubes of individual digits
then it is known as armstrong ex: 407,153=1 + 125 + 27 = 153

#include<stdio.h> if (m==s)

int main() printf("The number is Armstrong");
{ else

int r,s=0,n,m; printf("The number is not a
printf("Enter a number"); Armstrong");
scanf("%d",&n); getch();

m=n; }

while(n>0)

{

r=n%10;

n=n/10;

s=s+(r*r*r);

}

Department of ISE BMS Institute of Technology & Mgmt 5-8

The do-while Statement in

* The syntax of do—-while statementin C:

J

00p repetition condition)):

e The statement is first executed.

* |f the loop repetition condition is true, the
statement is repeated.

* Otherwise, the loop is exited.

Department of ISE BMS Institute of Technology & Mgmt 5-9

Flow diagram do-while loop

Body of loop

Test False [/ . :
Expression vl,"'Exn while Ioop-v‘,l

il —

True

Figure: Flowchart of do...while loop

Department of ISE BMS Institute of Technology & Mgmt 5-10

Example —do while
(input validation loop)

#include <stdio.h>
int main()
{int sum=0,num;
do
{
printf("Enter a number\n");
scanf("%d",&num);
sum+=num:;
} while(num!=0);
printf("sum=%d",sum);
return O;

} Department of ISE BMS Institute of Technology & Mgmt 5-11

An Example of the do-while Lodp.

"vc

/* Find even number input */

do {
printf(“Enter a value: ”);

scanf(“%d”, &num);
}while (num % 2 !=0)

This loop will repeat if the user

inputs odd number.

Department of ISE BMS Institute of Technology & Mgmt 5-12

Difference b/w while & do whil§. .

1. Entry controlled loop

2. If the condition is FALSE , while
loop is never executed.

3. syntax:
while(condn)
{ stmts;}

4. Flow diagram

1. Exit Controlled loop

2. If the condition is FALSE also in do-
while loop, at least once statements can
be executed.

3. Syntax

rest of code

do
{ stmts;
while(condn);

4. Flow Diagram

Body of loop

Test . False /. . ™
S _—| Exit while loop |

The for Statementin C

The syntax of for statement in C:

for (initialization ; condition ; update expr)
{ statements;

/

The initialization expression set the initial value of the
loop control variable(using assignment operator =).

The condition test the value of the loop control
variable(using Relational Operator).

The update expression update the loop control
variable(using incr/decr operator).

Department of ISE BMS Institute of Technology & Mgmt 5-14

Flow diagram -for loop
!

Initilization
statement

Update
statement

Body of for
Loop

Statement just
below for Loop

|

Figure: Flowchart of for Loop

Department of ISE BMS Institute of Technology & Mgmt 5-15

for statement

for(i=0;i<=4;i++)

{

printf(“\t%d”,i)

}

printf(“\n for loop over”);
o/P

1 2 3 4 5
for loop over

Department of ISE BMS Institute of Technology & Mgmt 5-16

Comparison of 3 loops

Forloop lwhile |Dowhle

for (n=1;n<=10;n++) n=1; n=1;
{ while(n<=10) do
.............. { {
b e v
n=n+1 n=n+1;
} }

while(n<=10);

Department of ISE BMS Institute of Technology & Mgmt 5-17

g
C pgm to sum of first n natural number$gs#

#include <stdio.h>

, , Output
int main()
_ Enter the value of n.
{int n, count, sum=0; 10
printf("Enter the value of SUM=55

n.\n"); scanf("%d",&n);
for(count=1;count<=n;++count)
{ sum+=count; }
printf("Sum=%d",sum);

return O; }

Department of ISE BMS Institute of Technology & Mgmt 5-18

C pgm to find factorial of a given number

#include<stdio.h>
int main()
{
inti,f=1,num;
printf("Enter a number: ");
scanf("%d",&num);
for(i=1;i<=num;i++)
f=f*i;
printf("Factorial of %d is: %d",num,f);

return O;

Department of ISE BMS Institute of Technology & Mgmt 5-19

Additional Features of for

More thanl variable can be initialized

More than 1 part for update expression
section

Test condition can have any compound
relation

More than 1 parts in each section will be
seperated by commas.

for(i=1,m=50; i<20 && sum <100; i++,m--)

Department of ISE BMS Institute of Technology & Mgmt 5-20

Additional Features of for

* We can also use expression in the initialization
and incr/decr part.

for(x=((m+n)/2;x>0;x=x/2)
* One or more sections can be omitted, if
necessary
m=5;
for(;m!=100;)
{ printf(“%d\n”, m);
m=m+5;

Department of ISE BMS Institute of Technology & Mgmt 5-21

Nested Loops

* Nested loops consist of an outer loop with one
or more inner loops.

* e.g.,

for (i=1;i<=100;i++){
for(j=1;j<=50;j++){

}

 The above loop will run for 100*50 iterations.

Department of ISE BMS Institute of Technology & Mgmt 5-22

e
wr i, Y

Eg pgm using nested for loopsiy: =/

% recres
-“r,.'t"ﬂ el o

#include <stdio.h>

int main() i(i/lP i1
{ =1 j=2
int j; I
for(i=1;i<=3;i++) S jz

{for(j=1;j<=3;j++) i=2 =3

printf(“i=%d \t j=%d” ij);, 1= I
lreturn O; S jzg

J

Department of ISE BMS Institute of Technology & Mgmt 5-23

C program to print Floyd's triangle:

#include <stdio.h>
int main()
{
intn,i,c,a=1;
printf("Enter the number of rows of Floyd's triangle
to print\n");
scanf("%d", &n);
for(i=1;i<=n;i++)

{
for (c=1; c<=1i; c++)
{
printf("%d ",a);
a++,
}
printf("\n");
}
return O;

} Department of ISE | Acharya Institute of Technology _2 4

Homework #4 (1/2)

e Write a program that prompts the user to input
an integer n.

* Draw a triangle with n levels by star symbols.
For example,

n=3,
X

* %k

* %k %k

Homework #4 (2/2)

* An usage scenario:

Please input: 2
X

%k %k

Please input: 3
3

k %k

* %k %k

Please input: -9

Thank you for using this program.

-
W
e o, WY
ik =1
1 %]
e D™
“v.o-#‘#

Unconditional control Transfer

it T "‘ﬂr'! m::v:!n

e C permits a jump from one statement to
another within a loop as well as the jump out
of a loop.

4 unconditional control statements are
available in C

— goto (branching statement)

— break (looping)

— continue (looping)

— return (used only in functions)

Department of ISE BMS Institute of Technology & Mgmt 5-27

STATEMENTS (goto)

C supports the goto statement to branch
unconditionally from one point of the program to
another.

The goto requires a label in order to identify the
place where the branch is to be made.

A label is any valid variable name and must be
followed by a colon.
The general form is

goto label;

label:

Department of ISE BMS Institute of Technology & Mgmt 5-28

UNCONDITIONAL BRANCHING"

STATEMENTS (goto)

gato [abel label:

......... statement
abel) —— | [
statement goto label

Note: Don’t use 2 labels with same name

Department of ISE BMS Institute of Technology & Mgmt

5-29

Example for goto

#include<stdio.h>
#include<math.h>
main()

{

double x, y;

read:

printf(“Enter a No:”);
scanf(“%f”,&x);

if(x < 0)

goto read;

y = sqrt(x);
printf(“sqgrt root of %f is %f \n”,x, y);
return O;

)

Department of ISE BMS Institute of Technology & Mgmt 5-30

Example-2

// pgm to print n natural numbers

#include<stdio.h> natural:
#include<conio.h> if(i<=n)

void main() {

{ printf("%5d",i); i++;
int n,i=1; goto natural;
clrscr(); }

printf("Enter the final value™); getch();
scanf("%d",&n); }

printf("The natural numbers

are \n");

Department of ISE BMS Institute of Technology & Mgmt 5-31

Break statements

* The break command unconditionally stops the
execution of any loop in which it is
encountered, and goes to the next command
after the done.

e itis used to move the control outside of the
control statements.

e Syntax break;

Department of ISE BMS Institute of Technology & Mgmt 5-32

while (test expression) {
statement/s
if (test expression) {

do {
statement/s
if (test expression) {

W

>

break;

}

statement/s

}

while (test expression);

for (intial expression; test expression; update expression) {

break;
}
statement/s
}
—
statement/s
if (test expression) {
break;
}
statements/
}
—

NOTE: The break statment may also be used inside body of else statement.

Department of ISE BMS Institute of Technology & Mgmt 5-33

Eg of break statment

main()

{

intt;

for(;;) //infinite loop

{

printf(“\nEnter a Value:”);
scanf("%d" , &t) ;

if (t==10)

break ;

}

printf("End of an infinite loop...\n");
} 534

NOTE: When the loops are nested, the break
would only exit from the loop containing it.

That is, the break will exit only a single loop.

for(.......)
{
for(.....)
{
if(condn)
break;
} Exit from inner loop

} Department of ISE BMS Institute of Technology & Mgmt 5-35

4. Evaluate polynomial using Horner’s method (LAB
pgm) f(x)=a,x*+ax3+a,x*+a,x+a,

#include<stdio.h>
#include<conio.h>

void main()

{

int n,i,sum,a[10],x;

sum=0;

printf(“\nEnter the noof coefficients:");
scanf("%d",&n);

printf("Enter n+1 co-efficients: \n");

for(i=n;i>=0;i--)
{printf(“\na[%d]="i);
scanf("%d",&ali]);

}

printf(“\nEnter the Value of x:");
scanf("%d",&x);
for(i=n;i>=0;i--)

{

sum=sum™*x+ali];

}

printf("Sum is %d",sum);
getch();

}

Department of ISE BMS Institute of Technology & Mgmt 5-36

continue

Syntax: continue;

* The keyword continue allows us to take the
control to the beginning of the loop bypassing
the statements inside the loop which have not
yet been executed.

Department of ISE BMS Institute of Technology & Mgmt 5-37

Pgm to show how continue works,)

Ny
#include<stdio.h> Output

;nam() 1)
inti,j; 21
for(i=1;i<=2;i++)

{

for(j=1; j<=2; j++)

{

if (i= =j)

continue;

printf(“\n%d\t%d\n”, i,j);

}

}

return O

} Department of ISE BMS Institute of Technology & Mgmt 5-38

Sum of positive elements

#include<stdio.h>
int main()
{
int a[5]={-1,2,-3,4,-5};
int 1,sum=0;
for(i=0;i<5;i++)
{
if(a[i]<0)

continue;
sum+=alil;
}
printf(“sum of positive elements: %d\n”, sum);
return O;

}

Department of ISE BMS Institute of Technology & Mgmt 5-39

Difference b/w break & contin

“

1. Appears both in switch Appears only in
and loop(for, while ,do) loop(for,while,do) statements

statements

2. Used to exit from the Used to continue the loop,
loop immediately skipping one or more
skipping one or more statements in the loop.

statements in the loop

3. Syntax: break; Syntax: continue;

Department of ISE BMS Institute of Technology & Mgmt 5-40

Module-3
Arrays

By
Prof Swetha M S
ISE-BMSIT&M

Department of ISE = BMS Institute of Technology & Mgmt

Syllabus-Arrays

o Using an array
o Using arrays with Functions
o Multi-Dimensional arrays

Department of ISE BMS Institute of Technology & Mgmt

Arrays

Defn:

Array 1s a data structure that represents a
collection of elements of same data type. (derived
data type)

Syntax: datatype array_name[subsript/index/size];
Eg: int Num[3];

Num]|o] Num|1] Num|2]

Department of ISE BMS Institute of Technology & Mgmt

Need

» Easy to process large amount of data
Classification of Arrays

 Single (one) Dimensional
« Two dimensional
e Multidimensional

Department of ISE BMS Institute of Technology & Mgmt

Single dimensional Array $ 2

o

‘ O rrcuncd ’

 Linear list consist of data items of same
type.

* In memory all data items stored in
continuous memory location.

eg. int a[3];

10

1000 1002 1004 1005

AN ol

Properties of Array

Elements stored in array should be of same type
Elements are stored contiguously in memory.
Subscript of first item is always zero(if not specified)
Each data item is accessed using the name of the array
Index of the array is always an integer
eg. a[2] V correct
al2.5] X wrong
a[‘s’] vV correct it takes ASCII value of ‘5’
a[5+2] + correct

Department of ISE BMS Institute of Technology & Mgmt

Declaration of one dimensiong
Array

Syntax: Datatype array_name[index];

* int marks[5]; mem—>2* 5=10 bytes
» float avg [3]; mem—->4%*3=12 bytes
e char name[5]; mem—->1%*5=5 bytes

Declaration using Named constants
const int SIZE=5;
int a[SIZE];

Declaration using Symbolic Constants
#define SIZE 3;
int marks[2+SIZE];

Department of ISE BMS Institute of Technology & Mgmt

sMs
e
,ﬂf_."%?:_"ﬁ‘
S
,"*'.: < P
L SENEITY &
Ca—

Storing values in Arrays $:
S

e Initialization

 Assigning values
 User input from keyboard
Initialization

data type
array_name[index]={v1,v2,...vn};

eg—> int a[5]= {10,20,30,40,50};

Department of ISE BMS Institute of Technology & Mgmt

the size of the array
2. char name[5]={K’, ‘U’, ‘M’, ‘A’/R’};
3. int a[5]={10,20};
4. int a[]={10,20,30,40};
Array initialization with String

String is defined as sequence of character enclosed within
double quotes ends with NULL(\0) character.

Char b[]= “WELCOME” // array size is equal to size of string +1

w e L Jc o M JE |0
Department of ISE BMS Institute of Technology & Mgmt

» Note: Size of the array must be known
during compilation.
* Eg:
main()

{

intal]; // error
al1]=20;

Department of ISE BMS Institute of Technology & Mgmt

User input for arrays

* Using loops

Reading array Input Displaying ouput array
for(i=0;i<=n-1;i++) for(i=0;i<=n-1;i++)
{ {
scanf(“%d” &ali]); printf(“%d”,ali]);
} }

Department of ISE = BMS Institute of Technology & Mgmt

Bubbl? sort

#include<stdio.h>

#include<conio.h> if(a[jl>a[j+1])
void main() {

{ temp=alj];
int n,i,j,a[10],temp; alj]=alj+1];
clrscr(); alj+1]=temp;

printf("Enter the No. of Elements:\n"); }

scanf(“%d”,&n);

printf(“ Enter the array Elements:\n”); }

for(i=0;i<n;i++)

{

printf("\t");
scanf("%d",&al[i]);
}

for(i=0;i<n-1;i++)

{

for(j=0;j<n-1+i;j++)

printf(“\nThe sorted elements are:\n");
for(i=0;i<n;i++)

{

printf("\t");

printf("%d",a[il);

}

getch();

Department of ISE = BMS Institute of Technology & Mgmt

Output

Enter the No. of Elements: 5
Enter the array Elements:

5 3 1 2 4
The sorted elements are

1 2 3 4 5

Department of ISE BMS Institute of Technology & Mgmt

Copy one array to another {

o
array —
// Copying data from array 'a' to array 'b
#include<stdio.h> for (i=0; i < num; i++)
int main() { {
int arrl[30], arr2[30], i, num; arr2[i] = arri[i];

printf("\nEnter no of elements:");

o/ AN .
scanf("%d", &num); //Printing of all elements of array

//Accepting values into Array orintf("The copied array is :");
printf("\nEnter the values :"); for (i = 0; i < num; i++)
for (i=0; i< num; i++) {
{ printf("\narr2[%d] = %d", i,arr2[i]);
scanf("%d", &arrl[i]); }
} return (0);

Department of ISE = BMS Institute of Technology & Mgmt

Output

Enter no of elements : 5
Enter the values : 11 22 33 44 55
The copied array is: 11 22 33 44 55

Department of ISE BMS Institute of Technology & Mgmt

H/w

 average of array elements
* Find max value in an array
« Sum of odd and even numbers in an array

Department of ISE BMS Institute of Technology & Mgmt

seMs
o=t
ﬁf' - .éﬁ
28 gtn, Y
:'*'.: < P
K 3 o
S am—— oA

Two dimensional arrays $:
S

A two dimensional array stores data as a
logical collection of rows and columns.

Also called arrays of arrays (matrix)

Each element of a two-dimensional array has a
row position and a column position.

Syntax:
— data type array_name[row][col];
—eg: intarray|5][3];

Department of ISE BMS Institute of Technology & Mgmt

Creating/declaring 2-D arra

int a[3][2];
a[0,0] a[0,1]
a[0,0]
al,O a[lll]
a[2,0] al2,1]

* Row size and col size must be integers.

Department of ISE BMS Institute of Technology & Mgmt

Initializing 2D arrays i
g o gl
e 1nt data[2] [5]; //allocates consecutive memory for
10 integer values

Initialized directly in the declaration statement

« double t[2][2] = {{3.0,5.0},{2.1,7.2}};
//allocates and 1nitializes

(or)
t[0][O0]= 3.0; t[0][1]=5.0; +t[1][0]=2.1; t[1l][1]=7.2

3o so a1 |12
| | | |
Y Y

1 st row 2"d row

Department of ISE BMS Institute of Technology & Mgmt

intc[1[3] =1{1{1, 2, 3},
{4,5, 6},
{7, 8, 9},
{10, 11, 12} };

Programming Error: Do not specify more values than the number of elements
declared for the array.

Department of ISE BMS Institute of Technology & Mgmt

Input of Two-Dimensional Arrags

rreuuﬂ”
it v, Tor ey do

* Data may be input into two-dimensional
arrays using nested for loops interactively or
with data files.

for(i=0;i<2;i++)

{
for(j=0;j < 3; j++)
{
scanf(“%d “, &ali][j]);
}

. «“ AW
printf(“\n”);
J

Output of Two-Dimensional Arr

Nested for loops are used to print the rows
and columns in row and column order.

int a[2][3]=1{5, 6,9, 4, 2, 10};

for(i=0;i<2;i++)
{
for(j=0;j<3;j++)
{
printf(“%d % a[illj]);

}
printf(“\n”);

Department of ISE BMS Institute of Technology & Mgmt

Matrix addition

#include <stdio.h>

int main()
{
int m, n, ¢, d, first[10][10], second[10][10], sum[10][10];

printf("Enter the number of rows and columns of matrix\n");
scanf("%d%d", &m, &n);

printf("Enter the elements of first matrix\n");
for (C = O’ c<m, C++)

{
for (d =0; d < n; d++)
{
scanf("%d", &first[c][d]);
}
}

Department of ISE BMS Institute of Technology & Mgmt

printf("Enter the elements of second matrix\n");
for (c=0; c<m; c++)
for(d=0;d<n;d++)
scanf("%d", &second[c][d]);

printf("Sum of entered matrices:-\n");
for (c=0; c<m;c++)
for(d=0;d<n;d++)
{
sum|c][d] = first[c][d] + second[c][d];
//Sum[0][0]=first[0][0]+sec[0][O]
//Sum[0][1]
printf("%d\t", sum[c][d]);
}

. " 1y e
printf("\n");
} Department of ISE BMS Institute of Technology & Mgmt

return 0: }

E\programmingsimplified.com\c\add-matrix.exe

Enter the number of rows and columns of matrix

2

2

Enter the elements of first matrix
172

3 4

Enter the elements of second matrix
5 6

3 |

Sum of entered matrices:-

6 8

5 5

Matrix Multiplication

“For matrix multiplication, the number of columns in the first matrix

must be equal to the number of rows in the second matrix”
2x2 3x3
#include <stdio.h>
include<process.h>
int main()
{
intrl, c1,r2,c2 i, j,k, a[5][5], b[5][5], c[5][5];
printf("Enter the number of rows and columns of matrix A\n");
scanf("%d%d", &rl, &cl);
printf("Enter the number of rows and columns of matrix B\n");
scanf("%d%d", &r2, &c2);
if(c1!=r2)
{
printf(“Matrix Multiplication not possible\n”);

EXIt(O); Department of ISE BMS Institute of Technology & Mgmt

1

else

{

printf("Enter the elements of first matrix\n");

for (i=1;i<=r1;i++)
for (j=1; j <= c1; j++)
scanf("%d", &ali][j]);

printf("Enter the elements of second matrix\n");
for (i=1;i<=r2;i++)
for(j=1;j<=c2;j++)
scanf("%d", &bl[i][j]);

Department of ISE BMS Institute of Technology & Mgmt

Department of ISE BMS Institute of Technology & Mgmt

for(i=1;i<=r1;i++) printf("The product of 2 Matrices are:\

{ for(i=1;i<=r1;i++)
for(j=1;j<=c2;j++) {
{ for(j=1;j<=c2;j++)
c[i][jI=0; {
for(k=1;k<=c1;k++) printf("%d \t",c[i][j]);
{ }
clillil=clillil+alil kI *bIKI[; printf(“\n”);
} }
} }
return O;
} }

Department of ISE | Acharya Institute of Technology

Enter the number of rows and columms of matrix A
2
4
Enter the number of rows and columms of matrix B
2
2

Matrix Multiplication not possible

Enter the number of rows and columms of matrix A

2

2

Enter the number of rows and columms of matrix B
2

2

Enter the elements of first matrix
| |

2 2

Enter the elements of second matrix
| |

2 |

The product of £ Matrices are:

3 2

b 4

Module-3

Strings

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

Department of ISE = BMS Institute of Technology & Mgmt 5-1

Strings)
[[] [o qw
« A string is a array of characters enclosed with in dou e
quotes terminated with a null character(\0).

w_JE L |c_o M lE__|\0

« The operations that are pertormed on character strings
are

\/

% Reading and writing strings.

\/

%+ Combining strings together.

\/

% Copying one string to another.

% Comparing strings for equality.
+ Extracting a portion of a string.

Department of ISE BMS Institute of Technology & Mgmt

*?;,:ff:i,- =
N ke P
"- SV W

N e

Declaration of Strings

Syntax

char<var name>|[array_length];
Eg:

char msg[6];

char stri[10],str2[10]......;

Department of ISE BMS Institute of Technology & Mgmt

PRCRS
— 2

Iy
~

Initialization of Stringsiy
S

Syntax
char str[size]=string constant;
char str[]=string constant;
Eg:
char msg[10]=“Hello”;
H JE L L J0 V0 V0 V0 V0 Vo
char msg [] = “ Hello”;
W JE L L Jo V0o
char msg[]={"H’e’/I’I'’o’)\0’};
HJE L L0 0

Reading and displaying string&:

* Read a string—> scanf(), gets(), getchar()
* Display a string—=> printf(), puts(), putchar()

i) Using scanf() and printf()

scanf(“%s”,&msg); = format specifier is %s
printf(“ Hello”);
printf(“%s”, msg);

Department of ISE BMS Institute of Technology & Mgmt

read and display string using scanf a
printf

#include<stdio.h>

int main()

{

char name[20]; // declaration of string;
printf(“\nEnter your name:”);

scanf(“%s”, &name); // & is optional for string
printf(“\nwelcome %s !!'\n”, name);

return O;

}

Outputil: Output2:

Enter your name: BMSIT Enter your name: BMSIT BANGALORE

Welcome BMSIT!!! Welcome BMSIT !!!

Department of ISE = BMS Institute of Technology & Mgmt

Read and display string using ge
and puts function

#include<stdio.h> Output:

#defing size 20 Enter the name with
int main() space: dennis ritchie
{

You are : dennis ritchie
char name[20];

printf(“Enter the name with space:”);
gets(name);

printf(“\nyou are:”);

puts(name);

return O;

)

Department of ISE = BMS Institute of Technology & Mgmt

Difference between scanf()
and gets()

scanf() ets

1. Reads input till space, it omits 1. Reads input including space till
characters after blank space. enter key is pressed

2.5yntax 2.Syntax

scanf(“format specifier”, str_var); gets(str_var);

3. eg: 3. eg:

char str[10]; char str[10];

scanf(“%s”, str); gets(str);

Department of ISE = BMS Institute of Technology & Mgmt

Read and display strings using {'J

oy
getchar() and putchar() —
#include<stdio.h> printf("you are:");
#define size 20 for(i=0;name[i]!="\0';i++)
int main() putchar(nameli]);
{ return O;
char name[20]; }

int i=0;
printf("enter the name :");
while((name[i]=getchar())!="\n") Output:

{ enter the name: BMSIT

i}++; You are: BMSIT

nameli]="\0'";

Department of ISE = BMS Institute of Technology & Mgmt

Creating array of string
L e
#include<stdio.h>
#include<conio.h>

int main()

{

char days[7][10]={"Sunday","Monday",”"Wednesday","Thursday","Friday","Saturday"};
for(i=0;i<7;i++)

{

printf("%s \t",daysli]);

}
getch();

returnO;

}

Department of ISE BMS Institute of Technology & Mgmt

String Manipulation functiofys:,

#include<string.h>
String manipulation functions:

Function Work of Function

strlen() Calculates the length of string
strcpy() Copies a string to another string
strcat() Concatenates(joins) two strings
strcmp() Compares two string

striwr() Converts string to lowercase
strupr() Converts string to uppercase

Department of ISE BMS Institute of Technology & Mgmt

http://www.programiz.com/c-programming/library-function/strlen
http://www.programiz.com/c-programming/library-function/strcpy
http://www.programiz.com/c-programming/library-function/strcat
http://www.programiz.com/c-programming/library-function/strcmp
http://www.programiz.com/c-programming/library-function/strlwr
http://www.programiz.com/c-programming/library-function/strupr

. Strlen()

temp_variable = strlen(string_name);

Eg:
#include<stdio.h>
#include <string.h>
int main()
{
char a[20]="Program";
int length;
length=strlen(a);
printf("Length of string a=%d \n",length); //calculates the length of string before null

charcter.

return O;

}
Output:

Length of string a=7
Department of ISE BMS Institute of Technology & Mgmt

Calculate the length of the string
without using string functions

#include <stdio.h>

int main()

{

char s[20];

inti;

printf("Enter a string: ");

scanf("%s",s);

for(i=0; s[i]!="\0"; ++i);
printf("Length of string: %d",i);

return O;

}

Output:

Enter a string: we
Length Of Stri ng. Nepartment of ISE BMS Institute of Technology & Mgmt

stremp function

Syntax:
temp_ varaible=strecmp(stringi,string2);

It compares the two strings and returns an
integer value.

 If both the strings are same (equal) then this
function would return o

 otherwise it may return a negative or positive
value based on the comparison.

Department of ISE BMS Institute of Technology & Mgmt

Eg for strcmp

#include <stdio.h> Outputl

#mdu‘_je <string.h> Enter first string: Apple
int main() Enter second string: Apple
{ Both strings are equal.
char str1[30],str2[30]; Output?
printf("Enter first string: "); - .

. Enter first string: Apple
gets(strl); Enter second string: cat
printf("Enter second string: "); strings are unequal.
gets(str2);

if(strcmp(strl,str2)==0)
printf("Both strings are equal");
else
printf("Strings are unequal");
return O;

} Department of ISE = BMS Institute of Technology & Mgmt

Compare two string without strempfe

#include<stdio.h>

int main() { Outputi:
char str1[30], str2[30]; Enter two strings:
inti;
printf("\nEnter two strings :"); apple
gets(strl); apple
gets(str2); strl=str2
i=0;
while (str1[i] == str2[i] && stri][i] !="\0") Output2:
4+ Enter two strings:
if (stri[i] > str2[i])
printf("strl > str2"); apple
else if (stri[i] < str2[i]) cat
printf("strl < str2"); strl<str?
else

printf("strl = str2");
return (0);

} Department of ISE = BMS Institute of Technology & Mgmt

strcat

 strcat() concatenates(joins) two strings.

It takes two arguments, i.e, two strings
and resultant string is stored in the first
string specified in the argument.

Syntax

o strcat(first_string,second_ string);

Department of ISE BMS Institute of Technology & Mgmt

Pgm for strcat

#include <stdio.h>

#tinclude <string.h>

int main()

{

char s1[10] = "Hello";

char s2[10] = "World";

strcat(s1,s2);

printf("Output string after concatenation: %s", s1);
return O;

}
Output:

Output string after concatenation: HelloWorld

Department of ISE BMS Institute of Technology & Mgmt

Pgm to concatenate two strings {{. ;)

[) “ﬁ‘
| | without strcat Ve
#include <stdio.h> o .
int main() utput:
{ Enter first string: hello
char s1[10], s2[10], i, j; Enter second string: world
printf("Enter first string: "); The concatenated string is: helloworld

scanf("%s",s1);
printf("Enter second string: ");
scanf("%s",s2);
for(i=0; s1[i]!="\0'; ++i); /* i contains length of string s1. */
for(j=0; s2[j]!="\0"; ++j, ++i)
{ s1[i]=s2[j]; }
s1[i]="\0";
printf("After concatenation: %s",s1);
return O;

} Department of ISE = BMS Institute of Technology & Mgmt

Strcepy()

* Function strcpy() copies the content of one
string to the content of another string.

* It takes two arguments.
Syntax

» strcpy(destination,source);

Department of ISE BMS Institute of Technology & Mgmt

Pgm for strcpy

#include <stdio.h>
#finclude <string.h>
int main()
{
char a[10],b[10];
printf("Enter string: ");
gets(a);

strcpy(b,a); //Content of string a is copied to string b.
printf("Copied string: ");
puts(b);
return O;

}
Output:
Enter string: hai

Copied String: hai

WAk

Pgm to copy one string to anothe

s
without strepy
#include <stdio.h> Output:
int main() .
{ Enter String s1: hello
char s1[10], s2[10], i; String s2: hello

printf("Enter string s1: ");

scanf("%s",s1);

for(i=0; s1[i]!="\0"; ++i)

{

s2[i]=s1[i];

}
s2[i]="\0";
printf("String s2: %s",s2);
return O;

} Department of ISE = BMS Institute of Technology & Mgmt

Bubbl? sort

#include<stdio.h>

#include<conio.h> if(a[jl>a[j+1])
void main() {

{ temp=alj];
int n,i,j,a[10],temp; alj]=alj+1];
clrscr(); alj+1]=temp;

printf("Enter the No. of Elements:\n"); }

scanf(“%d”,&n);

printf(“ Enter the array Elements:\n”); }

for(i=0;i<n;i++)

{

printf("\t");
scanf("%d",&al[i]);
}

for(i=0;i<n-1;i++)

{

for(j=0;j<n-1+i;j++)

printf(“\nThe sorted elements are:\n");
for(i=0;i<n;i++)

{

printf("\t");

printf("%d",a[il);

}

getch();

Department of ISE = BMS Institute of Technology & Mgmt

Department of ISE = BMS Institute of Technology & Mgmt

Module-3

Linear search, Binary Search
Bubble sort and Selection sort

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

Department of ISE = BMS Institute of Technology & Mgmt 5-1

Linear Search

#include<stdio.h> for (c = 0; ¢ < n; c++)
int main() {
{ if (array[c] == search)
int array[10], search, c, n; /* If required element is found */
printf("Enter number of elements in {
array\n"); printf("%d is present at location
scanf("%d", &n); %d.\n", search, c+1);
printf("Enter %d integer(s)\n", n); break;
for (c=0; c < n; c++) }}
scanf("%d", &array|c]); if (c == n)
printf("Enter a number to search\n"); printf("%d isn't present in the
scanf("%d", &search); array.\n", search);
return O;
}

Department of ISE BMS Institute of Technology & Mgmt

Output

Enter the No. of Elements: 4
Enter the array Elements:

11 5 77 32
Enter the elements to serach-77
Element found at position 3

Department of ISE BMS Institute of Technology & Mgmt

#include<stdio.h>
#include<conio.h>
void main()

{

int n,i,j,a[10],temp;
//clrscr();
printf("Enter the No. of Elements:\n");
scanf(“%d”,&n);

printf(“ Enter the array Elements:\n”);
for(i=0;i<n;i++)

{

printf("\t");

scanf("%d",&ali]);

}

for(i=0;i<n-1;i++)

{

for(j=0;j<n-i-1;j++)

Bubble{z sort

if(a[j]>a[j+1])

{

temp=al[j];
a[jl=alj+1];
a[j+1]=temp;

}

}

}

printf(“\nThe sorted elements are:\n");
for(i=0;i<n;i++)

{

printf("\t");
printf("%d",ali]);
}

getch();

}

Department of ISE BMS Institute of Technology & Mgmt

Output

Enter the No. of Elements: 5
Enter the array Elements:

5 1 4 2 8
The sorted elements are

1 2 4 5 8

Department of ISE BMS Institute of Technology & Mgmt

#include <stdio.h>
int main()

{

int array[10], n, i, j, min, temp;

printf("Enter number of
elements\n");
scanf(*'%d", &n);

printf("Enter %d integers\n®, n);

for (i=0;i<n;i++)
scanf("%d", &array[i]);

for (1=0;1<(n-1);i++) // finding

minimum element (n-1) times

{
min = i;
for(=1+1;)<n;j++)

Selectiq{n sort

If (array[j]<array[min])
min = j;
b

}

t = array[i];
array[i] = array[min];
array[min] = t;
}
}

printf("Sorted list in ascending
order:\n");

for (i=0; i< n; i++4)
printf("%d\n", array[i]);
return O;

}

Department of ISE BMS Institute of Technology & Mgmt

Output

Enter the No. of Elements: 5
Enter the array Elements:

5 7 4 8 1
The sorted elements are

1 4 5 7 8

Department of ISE BMS Institute of Technology & Mgmt

Module-4
Functions

Prof. Swetha M S
Assistant Professor
ISE-BMISIT& M

Department of ISE = BMS Institute of Technology & Mgmt

Functions

* Function is a sub program or a self contained
block of statements used to perform a specific
task.

» Every C program contains at least one function
called main()

» Types of functions

— Built in functions-> functions provided by C compiler
eg: scanf(),printf(),sqrt(),sin()

— User defined functions—> functions defined by user eg:
main()

Department of ISE BMS Institute of Technology & Mgmt 2

Advantages of user defined
functions

Provides modularity and thus reduces
complexity of the program

avolds repetition of code
Easy to debug/test the program

Reduces time and cost (functions created for
one pgm can be reused to another pgm with
little or no modification)

Department of ISE BMS Institute of Technology & Mgmt 3

Function Definition

Syntax:
return_type function_name (param list)

{

declarations;
executable statments;

}
Int add(int a, int b)

Note:

* A function can return only one value

* If the function returns no value then the return_type
would be void.

* If the return_type is not specified by default type is
int

Department of ISE BMS Institute of Technology & Mgmt 4

Return Type

Function Name

Local Declaration v /

int sum (inta, intb)

Parameter List
\ { =
i (Formal Parameters))
c=a+b;
return (¢) ; ==
/) T

Return Statement
Statements 5

Department of ISE BMS Institute of Technology & Mgmt

Parameter list will take the following forgt

* type parami, type paramz2,....type pararmyn -

 Data type to be specified for each
parameter

— Int max(intab,c) - wrong

— int max(int a, int b,int ¢) - correct

Department of ISE BMS Institute of Technology & Mgmt 6

Examples-Program

rs . : i TLOI™
Example: Cprogral\tl@df/bvonumbe /*with user d?flgid func
/*without function #include <stc.i101-1>
tinclude <stc.110-h> ~ #inCLUdefconlo.int ey
$include<conio.h> int add(int a, .
void main() void main()
{
. int sum, at’:b; o and 7Y :
i 2 intf (Y“enter ’
e and b")7 o wgd, $d”, &a, &b) ;
printf (“enter a) scanf (' r &3y
scanf (“3d%d”, &a,&b)7 sum = add(a;b); .
= ; intf (“sum is %d”, sum) ;
sur‘n atb' i %d” sum) 7 g h(): : '
printf(“sum 18 d getc ;
\ getch(); } | . .
int add (int a, 1int b)
{
int sum;
sum=a+b;
return sum;
) .

Department of ISE BMS Institute of Technology & Mgmt

LLocation of Functions

// after the main // before the main
Include header files Include header files
Function prototype Function prototype
main() Function definition()
{ {

} }

Function definition() main()

{ {

} }

Department of ISE = BMS Institute of Technology & Mgmt

[Location of Functions

Pgml.c Pgm?2.c

Include header files Function definition()
Function prototype {

main() }

{

}

Department of ISE = BMS Institute of Technology & Mgmt

[Location of Functions-After the main

/*Documentation Section: program to find the sum of two integers™/
#include <stdio.h>/*link section*/

int addition(int . int): /*Function Prototype declaration section™/

void main()

{

int nl.n2.sum: /*declaration part™/

printf("Enter the values of nl and n2\n"):. /~executable part starts
here>/

scanf("%d %d".&nl.&n2):

sum = addition(nl.n2):/* Function Call */

printf("Sum =%d \n ".sum):

H
int addition(int x,int v) /* Function definition*/

{

int s
Ss=X+Y;
return s; /* Return statement to return the sum s*/

Department of ISE = BMS Institute of Technology & Mgmt

[Location of Functions-Before the mai

int addition(int x,int v) /* Function definition™/
{
int s :
s = xX+Y¥y3;
return s: /* Return statement to return the sum s>/

In the file say addition.c the following code has to be included
#include <stdio.h>/*link section™/

Finclude<add . h~/* the header file which includes the function
definition ~/
void main()

{

mt nl.n2.sum:
S *declaration part™/

printf("Enter the values of nl and n2\m"): /~execurable part
starits here™/

scanf("%d %26d".&nl1.&n2):

sum = addition(nl.n2): /* Function Call */

printf("Sum =%d n ".sum):

Department of ISE = BMS Institute of Technology & Mgmt

Arguments/parameters appearing in function call is
called actual arguments/parameters

Arguments/parameters appearing in function
definition is called formal arguments/parameters

The number of actual and formal parameters must
be equal.

Also the data types and the order of declaration of
formal and actual parameters must be the same.

Department of ISE BMS Institute of Technology & Mgmt 12

Actual and formal parameters

Actual Parameters Formal Parameters
1) Actual parameters are used in 1) Formal parameters are used in the
calling function when a function header of a called function

function is invoked.

2) Actual parameters can be 2) Formal parameters should be only
constants, variables or variables.
eXpPressions.

3) Actual parameters send values 3) Formal parameters receive values
to the formal parameters. from the actual parameters.

4) Address of actual parameters 4) If formal parameters contains
can be sent to formal address. they should be declared as
parameters. pointers.

Department of ISE BMS Institute of Technology & Mgmt

Each function will have
— Function prototype

— Function call
— Function definition
— Int add(int a, int b)

If function is defined after main, function prototype is
must .

Function prototype tells the compiler which function is
used by the main what is its return type , number and
type of parameters.

Name of parameters is optional in function prototype
Function prototype should end with a semicolon

Department of ISE BMS Institute of Technology & Mgmt 14

Program to Print a sentence using
function

#include<stdio.h>

void display(); //function declaration
void main()

{
display(); //function call

}

void display() //function definition
{

printf("C Programming");

return;

Department of ISE BMS Institute of Technology & Mgmt

#include<stdio.h>

int add(int, int); // function prototype

int main()

{

int a=5,b=10;

add(a, b); // function call
}

int add(int m, int n) // function definition

{

int m,n,y;
Y=m+n;
return(y);

Department of ISE BMS Institute of Technology & Mgmt 16

Simple program using functiogs *
#include<stdio.h> o

int add(int,int); // function prototype

int main()

{
int mark1=50,mark2=40,tot;

tot=add(mark1,mark2); //function call markl,mark2-> actual arguments
printf(“the total is %d\n”, tot);
return O;

}

int add(int a,int b) // function defintion a,b—> formal parameters
{

int c;

c=a+b;

return (c); // returns the value of c to the variable tot

} Department of ISE BMS Institute of Technology & Mgmt 17

Note :

number of arguments, type of arguments, re
type in function prototype should match with
function defintion

int max(int a, int b); // fn prototype

main()

{..

max(x,y); // function call

}
int max(float a, float b, int c) // fn defn

{
} //Thisis wrong

Department of ISE BMS Institute of Technology & Mgmt 18

Module-4
Functions

Prof. Swetha M S
Assistant Professor
ISE-BMISIT& M

Department of ISE = BMS Institute of Technology & Mgmt

Types of User-defined Functions in C
Programming

 Function with no arguments and no return value
 Function with no arguments and a return value
 Function with arguments and no return value
 Function with arguments and a return value.

Department of ISE BMS Institute of Technology & Mgmt

https://www.programiz.com/c-programming/types-user-defined-functions#no_no
https://www.programiz.com/c-programming/types-user-defined-functions#no_yes
https://www.programiz.com/c-programming/types-user-defined-functions#yes_no
https://www.programiz.com/c-programming/types-user-defined-functions#yes_yes

Function with arguments and a return value.

Typel: with parameter with returning value

Parameters are passed from calling function to the called function and bas

ed on the receiye
parameter values called function performs required action and returns a value,
Example:

#include<stdio.h>
int add(int i, int 3);
void main ()

{

. . /*calling function main() passes the
int sum, a=10, b=20; parameters a and b to the user
sum=add (a, b) ; —* defined function add(). */
printf (“sum is $d”, sum) ;

getch ();

}

int add (int i, int J)
(:

int sum;
sum = i+j;
return sum; - —p

/*here user defined function add()

returning a value sum to calling
function*/

} .
Function type is int since it returns integer value to the called function.

Department of ISE BMS Institute of Technology & Mgmt

https://www.programiz.com/c-programming/types-user-defined-functions#yes_yes

}

Function with arguments and no return value {{ -

=
Type 2: with parameter without re |

p x turning value:
arameters are passed from calling function to the called function and called function does

Eta r:'t:lr: a value: It just performs the specified action.
#include<stdio.h>

void add(int i, int 9);

void main()

{

int a=10, b=20; /*calling function main() passes the parameters
add(a,b); —__ | aandb to the user defined function add() and
; getch() ; does not expect return value */

void add(int i, int 4)

-~ TTT T T mmsmsasges ANSE B AW ASAWALE e wsm v mmmgmyT <

int sum; :
sum = i+7j; /*here user defined functhn add()
printf (“sum is %d”, sum); computes sum and itself dfsplay
the value instead of returning to

calling function*/

—

punction type is void since it returns nothing to the called function.

DAl c-ococooA o e

Department of ISE BMS Institute of Technology & Mgmt

https://www.programiz.com/c-programming/types-user-defined-functions#yes_no

Function with no arguments and a return val

:IYP‘ 3: wlthot_lt parameter with returning value:
NO parameter is passed from calling function to the called function, but function returns a

value-
ginclude<stdio.h>

i dd()7
mt-: g /*calling function main() do not pass the
yoid main()

parameters a and b to the user defined
{ function add(), but expect return value

int sum;
sum=add (); ———» | fromthe add()*/

printf (“sum is %d”, sum);

getch():
J
int add () [*here the variables values (input) is
{ given within the user defined function
- i=10, §=20; -
int sum; A=L8y JWELs add() itself. Then computes sum and
sum = 1+3j; returns a value sum to calling function */
return sum; »|

}

Function type is int since it returns integer value to Ehe called function.

Department of ISE BMS Institute of Technology & Mgmt

https://www.programiz.com/c-programming/types-user-defined-functions#no_yes

Function with no arguments and no return vak@e

- ———— g

. without parameter without returning value: _ .
;zp:a:amctcro; pl;ssed from calling function to the called function. Called function does not

return any value.

Example:
$include<stdio.h>
void add() /*calling function main() do not pass
void main() the parameters to the user defined
(function add(), and also do not expect
add (); | return value from the add()*/
getch()7
}
void add() /*here the variables values (input) is

! : i=10, j=20;: given within the user defined function

;2; f urin,+j] ; _» | add() itself. Then computes sum and

. e wan is %d”, sum); | itself display the value instead of
prAntL{tan 25 returning to calling function*/

Function type is void since it returns nothing to the called function.

Department of ISE BMS Institute of Technology & Mgmt

https://www.programiz.com/c-programming/types-user-defined-functions#no_no

Types of User-defined Functions in
Programming-example-2

—unction wit

N No arguments and no return value

—unction wit

N no arguments and a return value

—unction wit

n arguments and no return value

—unction wit

n arguments and a return value.

Department of ISE BMS Institute of Technology & Mgmt

https://www.programiz.com/c-programming/types-user-defined-functions#no_no
https://www.programiz.com/c-programming/types-user-defined-functions#no_yes
https://www.programiz.com/c-programming/types-user-defined-functions#yes_no
https://www.programiz.com/c-programming/types-user-defined-functions#yes_yes

No arguments passed and no return Value

#include <stdio.h>

void checkPrimeNumber();

int main()

i

¥
iy

checkPrimeNumber(); S no argument is passed to
return @;

return type of the function is woid becuase no wvalue

void checkPrimeNumber()

i

int n, i, Tlag=6;

printf("Enter a positive integer: ");
scanft("%d" ,&n);

for(i=2; i <= n/2; ++1)

1

if(n%i == @)

1

tlag = 1;

ks
¥
if (flag == 1)

printf("%d is not a prime number."™, n);
else

printf("%d is a prime number.", n);

[Source Code of function having
prime()

is returned from t

Department of ISE BMS Institute of Technology & Mgmt

No arguments passed but a return vali

int n, i, flag = ©;
Sy no argument is passed to the function
S the walue returned from the function is assigned to n

n = getInteger();

for(i=2; 1i<=n/2; ++1)

1
ifF(n%i==0){
tlag = 1;
break;
¥
¥
if (flag == 1)
printf("%d is not a prime number.", n);
else

printf("%d is a prime number.", n);

return @;

¥

ff getInteger() function returns integer entered by the user
int getInteger()

1

int n;

printf{("Enter a positive integer: ");

scanf("%d" ,&n);

return n;

Argument passed but no return valug

#include <stdioc.h>
volid checkPrimeAndDisplay({(int n);

int 1 Source code of a function with arguments passed but ne return value]

1
int n;
printf("Enter a positive integer: ");
scant("%d" ,&n);
SY n 1is passed te the function
checkPrimeAndDisplay(n);
return ©;

¥

JSSf woid dndicates that no wvalue is returned from the function
volid checkPrimeAndDisplay(int n)

1
int i, flag = @;

1
if(n¥%i == ©){
flag = 1;
break;
by
¥
if(flag == 1)
printf("%d is not a prime number.",n);
else

printf("%d is a prime number.™, n);
Jepd C

e Sy

{
int n, flag;

printf("Enter a positive integer: ");
scanf("%d" ,&n);

/f n i1s passed to the checkPrimeNumber() function

S/ the walue returned from the function is assigned to flag wariabl

flag = checkPrimeNumber(n);

Functicon wit argument and a retw

if(flag==1)

printf("%d is not a prime number",n);
else

printf("%d is a prime number™,n);

return &;

¥

S/ integer is returned from the function
int checkPrimeMumber{int n}

{
/* Integer wvalue is returned from function checkPrimeNumber()
int i;
for(i=2; i <= n/f2; ++i)
{
if(n¥%i == @)
return 1;
by
return 8;
¥

Department of ISE BMS Institute of Technology & Mgmt

*/

Module-4
Functions

Prof. Swetha M S
Assistant Professor
ISE-BMISIT& M

Department of ISE = BMS Institute of Technology & Mgmt

Argument Passing

Parameter passing mechanism

 Call by value
 Call by reference
Call by value:

When the value of the variable is passed during
function invocation is called call by value.

Call by reference:
When an address of the variable is passed during

function invocation is called call by reference.

Department of ISE BMS Institute of Technology & Mgmt 31

Call by value

main ()

{ Output

inta = 10, b=20; x=20y=10

swap(a,b); a=10 b=20

printf (“\na=%d b =% d”, a,b);

} _ - Note:

swap(int x, int y) With this method the changes
,{ _ made to the formal arguments
m_t t.’ in the called function have no
t __X’. effect on the values of actual
x:y., argument in the calling

y B G function

printf (“\nx=%dy=%d", x,y);

}

Department of ISE = BMS Institute of Technology & Mgmt 32

e
- tn, Y

CALL BY REFERENCE
o

* The addresses of actual arguments in the calling
function are copied into formal arguments of the
called function.

* This means that using these addresses we would
have an access to the actual arguments and
hence we would be able to manipulate them.

 Change in formal arguments affect the actual
arguments

Department of ISE BMS Institute of Technology & Mgmt 33

Call by reference

main () output
{ x=20y=10
inta =10, b =20; 3=20b =10

swap (&a, &b);
printf (“\n a = %d b= %d", a, b);
}

swap (int *x, int * y)

printf(“\n x=%d y=%d"”, *x,*y);

Department of ISE = BMS Institute of Technology & Mgmt 34

Passing entire array as
#include <stdio.h> arguments

float average(float a[]); // fn prototype
int main(){
float avg, c[]={23.4, 55, 22.6, 3, 40.5, 18};
avg=average(c); /* Only name of array is passed as argument in fn call. */
printf("Average age=%.2f",avg);
return O;
}

float average(float a[]) // array var should be used as arg to receive the elements
{

int i;

float avg, sum=0.0;

for(i=0;i<6;++i){

sum+=ali];

}

avg =(sum/6);

return avg;

} Department of ISE BMS Institute of Technology & Mgmt 35

Passing arrays using Call
N value
include <stdio.h>

disp(char ch) // display function definition

{
printf("%c ", ch);
}
int main()
{
Char arr[] — {lal’ Ibl’ ICI’ ldll lel’ lfl’ |gl’ lhl’ III’ ljl};
for (int x=0; x<=10; x++)
{

/* passing each element one by one using subscript*/
disp (arr[x]); // fn call

}

return O;

Department of ISE BMS Institute of Technology & Mgmt 36

Passing array using call by
reference

#include <stdio.h>
disp(int *num)
{

printf("%d ", *num);
}

int main()

{
intarr[]={1, 2,3,4,5,6,7,8,9, 0};
for (int i=0; i<=10; i++)
{ /* passing element’s address*/
disp (&arr[i]);
}

return O;

Department of ISE BMS Institute of Technology & Mgmt

Sorting of elements using functiong, -

H#include<stdio.h>

void bubble_sort(int a[],int n) |{nt main()
{ - . int a[10],i,n;
int i,j,temp; printf("enter num of elements\n");
for(i=0;i<n-1;i++) scanf("%d",&n);
{ . " ! ! 1]
S printf("enter the elements of array\n");
for(j=0;j<n-(i+1);j++) for(i=0;i<n;i++)
{ ’ ' " n H
o scanf("%d",&ali]);
if(afj]>alj+1]) bubble_sort(a,n);
{ e o A
. printf("the sorted array is \n");
te[r?f)—ﬁ-[ﬂ,]. for(i=0;i<n;i++)
alll=al+45; printf("%d\n",a[i]);
alj+1]=temp; return O;
} 4
\ }
}
}

Department of ISE = BMS Institute of Technology & Mgmt

Passing Multidimensional array to functio®g#

H#include <stdio.h>

void Function(int c[2][2]); // prototype
int main()

{
int c[2][2],i,;
printf("Enter 4 numbers:\n");
for(i=0;i<2;++i)
for(j=0;j<2;++j){
scanf("%d",&c[i][j]);
}

Function(c); // 2d array passed

return O;

}

void Function(int c[2][2])

——

/* Instead to above line, void
Function(int c[][2]){ is also valid */

intij;
printf("Displaying:\n");
for(i=0;i<2;++i)
for(j=0;j<2;++j)
printf("%d\n",c[i][j]);

Department of ISE = BMS Institute of Technology & Mgmt 39

Module-4
Recursive Functions

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

Department of ISE = BMS Institute of Technology & Mgmt

Recursion

e Recursive function is a function that calls itself from its
own body.

« The function keeps on calling itself till a particular
condition holds true.

e add(N+add(n-1))
Properties of Recursion

» There is a criteria or condition that governs the execution
of recursive function. Without this condition, it will work
in an endless manner. This condition is also called the
base case of recursion.

Department of ISE BMS Institute of Technology & Mgmt

Pgm to calculate factorial using

recursion

factorial(8) = S = fact_pg'%l(4)
(N\
= S5 * 4*factorial{(3)
=5 = 4 =/: 3-fac£gri31£2)

=S5 %4=%*3 '{Z*factog'a{(d
=5 *4 %3 =3 *factorial(0)
+

=120 .

i n*factorial(p. - '
Oriln-1) where again factoria] of p.] s (n-1)*factorial(>)

ing condition, factorial(0) =1. At each step factor

: proc ' -y
concept is calleq recursion ip :::g;imted until it reaches stopping condition. Thi
o |

Department of ISE BMS Institute of Technology & Mgmt

Pgm to calculate factorial using
recursion

#include<stdio.h>

int factorial (int); //function prototyping
int main()

{ int num,result;
printf("\nEnter a number : ");

scanf("%d",&num);
result= factorial(num); // fn call

printf("\nFactorial of %d is %d",num,result);
return O;

Department of ISE BMS Institute of Technology & Mgmt

Continue..

int factorial(int value)

{

Int ans;

if((value==0) || (value==1))
return(1);

else
ans = value* factorial(value-1);

//call to itself
return(ans);

Department of ISE BMS Institute of Technology & Mgmt

With Recursive call

umﬂude<stdio.h>
int add (int n):
yoid main()

{ . . “'.
liinﬁ%("Enter a positive integer:)z
zcanf("%d",&n);
sum=add (n) 7 .
printf(“Sum = %d", sum);
getch()7

]
int add(int n)

{

if (n==0)
return O; |
else /* recursive call */

return n+add(n—1);

Department of ISE BMS Institute of Technology & Mgmt

Fibonacci series using

Recursion
#include<stdio.h> int fibbo(int x)
int fibbo(int x); {if(x==1 || x==0)
void main() return 1;
{ else
int n,i; {
printf("Enter the number of return(fibbo(x-1)+ fibbo(x-2));
terms in series\n"); }
scanf("%d",&n); }

printf("Fibonacci series:\n");
for(i=1;i<=n;i++)

printf("%ld\t",fibbo(i));
}

Void and parameter less functiof .

/*C program to check whether a number entered by user is

prime or not using function with no arguments and no return
value*/

#include <stdio.h>

void prime(); //fn prototype no parameter no return
int main()

{

prime(); //No argument is passed to prime()
return O;

Department of ISE BMS Institute of Technology & Mgmt

void prime()

{/* There is no return value to calling function main(). Henc
return type of prime() is void */

int num,i,flag=0;
printf("Enter positive integer enter to check: \n");
scanf("%d",&num);
for(i=2;i<=num/2;++i)
{

if(num%i==0)

{

flag=1;

}

}

if (flag==1)

printf("%d is not pri o prin od is prime",num); }
Department of IS BMS Institute of Technology & Mgmt

Lab Program-12
Square Root of Given Number

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

Department of ISE = BMS Institute of Technology & Mgmt

Lab Program-12

* Develop a program to find the square root
a given number N and execute for all possible
inputs with appropriate messages.

* Note: Don’t use library function sqrt(n).

Department of ISE BMS Institute of Technology & Mgmt

%’Y\g—j\"‘\ Pro 31;(‘\- c{-—l};g_a;xsm: et oo L. V5 Unpoe

B 1d $es %’J‘?

e recd B oo - -%r o yruol'fom fg«{ lODF

=4
s 4
Qe asw VIvrg Rew X koo?& E&D K
3 >§¢c éa_.q;-eﬁzQ W eI
D = }—ccwz)ncu—o-\ e
\ e cc)u.a) \‘g =<0O) — ,r
‘:l:);é_ﬂ
Y 4
[) &‘v“"w&

Department of ISE BMS Institute of Technology & Mgmt

ﬁq«m&_@;—_—;—_
S-—, ~13-qa) Yo boad iy T
a=1" - : d)i"/?
2 & = 5D
Dt ald = SO
W2 L> S

,Lﬁ? 13 >~ <0

PN N, T TN

%&’;ngw ‘3.2 = o

g:mhgk;ﬂ;lm\m wa&mé

7

Department of ISE BMS Institute of Technology & Mgmt

P

Department of ISE BMS Institute of Technology & Mgmt

s
Y= X— 000\
S

—

.ggiu@ﬂo ‘(“G,L\&ﬁ C" "m;;S we) _ \~A—

creeed wes)

Department of ISE BMS Institute of Technology & Mgmt

Lab Program-15
Binary to Decimal Conversion

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

Department of ISE = BMS Institute of Technology & Mgmt

*Purpose: This program demonstrates RECURSION.

*Procedure: Input binary number and call the recursive
function convert for translating binary number to
decimal number.

*Input: A binary number bin.
*Expected Output: Decimal number

Department of ISE = BMS Institute of Technology & Mgmt

Implement Recursive functions for
Binary to Decimal Conversion

#include <stdio.h>

int convert(int);

int main()

{

int dec, bin;

printf("Enter a binary number: ");

scanf("%d", &bin);

dec = convert(bin);

printf("The decimal equivalent of %d is %d.\n", bin,dec);
return O;

Department of ISE BMS Institute of Technology & Mgmt

Implement Recursive functions for Bin
to Decimal Conversion

int convert(int bin)
{

if (bin ==0)

{

return O;

}

else

{
return (bin % 10 + 2 * convert(bin / 10));
}

Department of ISE BMS Institute of Technology & Mgmt

0<‘W)19~«\Q b o lok Q X (ww}‘be*\)\o))‘

i/

; 100
Department of ISE BMS Institute of Technology & Mgmt

‘2= ——/\-@

oo ey (bt“rort-\ho “/ o \o’-}

Aa@ (M&A"{wﬁm/)t))‘k

) @‘\‘ 2, A (c‘uﬁo—\)‘<\00/°}>\oo 3
C’W\"((OO

LW &&E\OO ‘/o YO % D ieand Qcol‘,‘)) Qgﬂ-‘u‘&wu__

,"A\XLO'\'Q\X(W&QOJ =

tra [o+t ax[\@fro ax LM(\O/,@) —

[—!;\acto—\c;usco—\ .;\.aggﬂ —

| Na X (o ax Lo-\al —
V2 2ox e akgagl e

Department of ISE BMS Institute of Technology & Mgmt

\010 e

Qom /- 10) &;"’C\mo/m)

O " o N
ax 1o o)y (-1 /,D))
oL /\"\' ~ % / N)
QA C "K\\oﬁta 1o 55 2 r\‘ //'DJ\
oxak (12 ax (o= 3/)
~ N F L B |

(L2 ax[a)

L

ofR ax (\+H)

o A X (<)

o= 10 4 JXQ;'nr@) o S \O =

Department of ISE BMS Institute of Technology & Mgmt

Lab Program-9
Compute Sin(x) using Taylor series
approximation

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

Department of ISE = BMS Institute of Technology & Mgmt

Evaluating Sin(x) values without .
build in function and comparing =
result with build in function

* Develop a Program to compute Sin(x) using
Taylor series approximation .Compare your
result with the built- in Library function. Print
both the results with appropriate messages

Department of ISE BMS Institute of Technology & Mgmt

Program

% e
/* Program to calculate sine value of given angle */ N
#include<stdio.h>
#include<conio.h>
#include<math.h>
#define Pl 3.142
int main()
{
int i, degree;
float x, sum=0,term,nume,deno;
clrscr();
printf("Enter the value of degree");
scanf("%d",°ree);
x = degree * (P1/180); //converting degree into radian

nume = x;
deno = 1;
i=2;

Department of ISE BMS Institute of Technology & Mgmt

Program

do

{

//calculating the sine value.

term = nume/deno;

nume = -nume*x*x;

deno = deno*i*(i+1);

sum=sum-+term;

i=i+2;

} while (fabs(term) >= 0.00001); // Accurate to 4 digits
printf("The sine of %d is %.3f\n", degree, sum);
printf("The sine function of %d is %.3f", degree, sin(x));
return O;

Department of ISE BMS Institute of Technology & Mgmt

Program
_d

L, Pogeam — A

——

Ko Recies - Cadndoli o Gncnd adms YoTvhoud
bas\d - Ra ﬁ
Toulox Lesues o—??'fbﬁ'ﬂ'\a)"':‘oﬂ'
-

2 A, W L e g
g?t\(‘\')". -,L”(l—-—-"/—'—{
2 §'\~ = _
>T(5\ﬂ’\
N e B¢ P
c\emwﬁn'g(

Department of ISE BMS Institute of Technology & Mgmt

Program

&oJL
g\obﬁw&b l;
MM))‘

@\QE\M \‘\‘}

 asle(Covdinion),

Program

Department of ISE BMS Institute of Technology & Mgmt

Program

&T\\\W S "'NKWX’MI'\(‘ @)

—

A

—) = \XJol\m&\\c SO RSN

Qv Kened

> SK‘@ PovRA 3 \h(mm{hy ‘jj 2

Program
At 2. Aeveybol yt (R=28)
Y
Loedm S\ESUC\L\&'—G'\‘D We) W ho /—. N

% R veead Ty erealaskT® UG «(ng\..:q

£ Vo Yo 1o Txa Co a;t, Ny S h\{ |

- B/
+H\e (%a),v‘s(\"—wn> o 00603’)/‘ e Doon l

LV 1A < SR aon ol
ok S R

Department of ISE BMS Institute of Technology & Mgmt

Module-5
C Pointers

Prof. S wetha M S
ISE-BMSIT&M

Department of ISE = BMS Institute of Technology & Mgmt

OBJECTIVES

Pointer variable definitions and initialization
Pointer operators

Passing arguments to functions by reference
Pointer expressions and pointer arithmetic
Relationships between pointers and arrays
Array of pointers

Character pointer and functions

Pointer to pointer

Department of ISE BMS Institute of Technology & Mgmt

Pointer Variable Definitions ang” *
Initialization

Contain memory addresses as their values

Normal variables contain a specific value (direct reference)

Defn

A pointer is a variable which contains the address of a variable that has a
specific value (indirect reference)

count
5 count directly references a
variable that contains the value 7
countPtr count

Pointer countPtr indirectly
—» 7 references a variable that
contains the value 7

Department of ISE BMS Institute of Technology & Mgmt

Pointer Variable Definitions andg
Initialization

e Pointer definitions
— * used with pointer variables
int *myPtr;
— Defines a pointer to an int (pointer of type int *)

— Multiple pointers require using a * before each variable
definition
int *myPtrl, *myPtr2;
— Can define pointers to any data type
— Initialize pointers to 0, NULL, or an address
* 0 or NULL — points to nothing

e Oisthe only integer value that can be assigned directly to a
pointer variable.

* Initializing a pointer to 0 is equivalent to initializing a pointer to
NULL, but NULL is preferred

Department of ISE BMS Institute of Technology & Mgmt

Pointer Operators

» & (address operator)
— Returns address of operand

inty =5;
int *yPtr;
yPtr = &y; /* yPtr gets address of y */

yPtr “points to” y

yPtr Y

——p §

yPtr Y

location location
500000 SULIED 600000 2

Department of ISE BMS Institute of Technology & Mgmt

Pointer Operators

. * (indirection/dereferencing operator)

— Returns a synonym/alias of what its operand
points to

— *yptr returns y (because yptr points toy)

— * can be used for assignment

e Returns alias to an object
yptr = 7; / changes y to 7 */

— Dereferenced pointer (operand of *) must be an
lvalue (no constants)

. * and & are inverses
— They cance

Department of ISE BMS Institute of Technology & Mgmt

© 00 N O 0o WN P

NNNDNRE RRRRRR R R R
WNPFP OO OwWNOOUhAWNIERO

24

#include <stdio.h>

/*Using the & and * operators */

int main(void)

{

= fig07 _04d.c

int a; /* a is an integer */

int *aPtr; /* aPtr 1is a pointer to an integer */ (1 Of 2)
a=17;

aPtr = &a; /* aPtr set to address of a */

printf("The address of a is %p"

"\nThe value of aptr is %", &, aPtr); If aPtr pointsto a, then &a and

aPtr have the same value.

printf("\n\nThe value of a is %d"

"\nThe value of *aPtr is %d", a, *aPtr); < a and *aPtr have the same value

printf("\n\nShowing that * and & are complements of "
"each other\n&*apPtr = %p"

"\n*&aptr = %p\n", &*aPtr, *&aPtr); «— g*aPtr and *&aPtr have the same value

return 0; /* indicates successful termination */

25 } /* end main */

Department of ISE BMS Institute of Technology & Mgmt

The address of a is 0012FF7C
The value of aPtr is 0012FF7C

The value of a is 7
The value of *aPtr is 7

Showing that * and & are complements of each other.
&*aPtr = 0012FF7C
*&aPtr = 0012FF7C

= fig07_04.c

Department of ISE BMS Institute of Technology & Mgmt

Calling Functions by Referenc;;?f:;

13 LA
“M
e xicy ®o

e Call by reference with pointer arguments
— Pass address of argument using & operator
— Allows you to change actual location in memory

— Arrays are not passed with & because the array name is
already a pointer

. * operator

— Used as alias/nickname for variable inside of function
void double(int *number)

{

*number = 2 * (*number);

}

— *number used as nickname for the variable passed

Department of ISE BMS Institute of Technology & Mgmt

/*Cube a variable using call-by-value */
#include <stdio.h>
int cubeByValue(intn); /* prototype */
int main(void)

{

int number = 5;
printf("The original value of number is %d", number);
/* pass number by value to cubeByValue */
number = cubeByValue(number);
printf("\nThe new value of number is %d\n", number);
return O;

}
int cubeByValue(intn)

{

returnn * n * n;

}

The original value of number is 5
The new value of number is 125

Department of ISE BMS Institute of Technology & Mgmt

Call-by-reference with a pointeg®
argument A

Function prototype takes a pointer argument

#include <stdio.h>
void cubeByReference(int *nPtr); /* prototype */

int main(void) Function cubeByReference is
{ passed an address, which can be
int number = 5- the value of a pointer variable

printf("The original value of numb
/* pass address of number t
cubeByReference(&number);

printf("\nThe new value of number is %d\n", number);

is %d", number);
beByReference */

return O; In this program, *nPtr is

} number, SO this statement
void cubeByReference(int *rrPtT/ modifies the value of

{ number itself.

*nPtr = *nPtr *x*nPtr x *nPtr; /* cube *nPtr */

}

Department of ISE BMS Institute of Technology & Mgmt

Analvysis of A Typical Call-by-Val

Step | Before ma+din calls cubeByValue:
-::nt mainC void D Pnumber ;‘i:nt_ cubeByValuecC int D
Ant number - 3 (3 returmn N %Y N %Y ng;
¥ "
number = cubeByValued number D
3 undefined
Step 2 After cubeByValue receives the call:
it mainC void D mnumbe r int cubeByValueC int nn D
i L
ANt number - 53 s return N Y n % n;
¥ "
number = cubeByValued number D ;
% 5
Step 3 After cubeByValue cubes parameter n and before cubeByValue returns to main:
it mainC void D mumbe r TNt cubeByValued int n D
1 - 15 125
ANt number - 53 return N ® 'R Y 13
- ¥ (2}
Nnumber « cubeByValued number D ;
¥ 5
Step 4: After cubeByvValue returns ta main and before assigning the result to numbe r:
ANt maindc void D mnumbe r int cubeByValuedd int n D
i . B
1Tt number = 53 S recurn n * n %* n;
125 i
]
number « cubeByValued nmnumber D ;
¥ undeflined
Step 5: After madtn completes the assignment to numbe r:
it maindC void D mnumbe r int cubeByvValuedd int n D
1 L
int number = 53 125 recurn n * n v n;
125 125 B “
numbe r (] ByValu Nnumbe r -
3 —d = NPAOV V™ ec) >3 undelined

Department of ISE BMS Institute of Technology & Mgmt

Analysis of A Typical Call-by-Reference
R

Step |: Before main calls cubeByReference

A\

znt main(void) nomber ¥o1d cubeByReference(int *nPtr)
int number = 5; S *nPtr = *nPtr * *nPtr * *nPtr;
+ nPtr
cubeByReference(&number) ;
¥ undefined
Step 2: After cubeByReference receives the call and before *nPtr is cubed:
lnt main(void) R mber ¥o1d cubeByReference(int *nPtr)
int number = 5; 5 *nPtr = *nPtr * *nPtr * *nPtr;
}
cubeByReference(&number) ; ‘\\ nPtr
} \\ call establishes this pointer St
Step 3: After *nPtr is cubed and before program control returns to main:
int mainC void) g void cubeByReference(int *nPtr)
t { 125
sl alila ol e ha 2 *nPtr = *nPtr * *nPtr * *nPtr;
cubeByReference(&number); ‘\\ called function modifies caller’s nPtr
} \\\ variable -

Department o

BMS Institute of Technology & Mgm

Bubble Sort Using Call-by-
reference

* Implement bubblesort using pointers
— Swap two elements

— swap function must receive address (using &) of
array elements

* Array elements have call-by-value default
— Using pointers and the * operator, swap can switch
array elements

e Psuedocode

Initialize array

Department of ISE BMS Institute of Technology & Mgmt
Call function bubblesort

Bubble Sort Using Call-by-
reference

* Psuedocode
Initialize array
print data in original order
Call function bubblesort
print sorted array
Define bubblesort

Department of ISE BMS Institute of Technology & Mgmt

© 0 N O Ol WO N P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/* Fig. 7.15: fig07_15.c
This program puts values into an array, sorts the values into
ascending order, and prints the resulting array. */

#include <stdio.h>

#define SIzZE 10

void bubbleSort(int * const array, const int size); /* prototype */

int main(void)

{
/* initialize array a */
int a[s1ze 1] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
int i; /* counter */
printf("Data items 1in original order\n");
/* loop through array a */
for (i =0; i < SIZE; i++) {
printf("%4d", a[i 1);
} /* end for */
bubblesort(a, SIZE); /* sort the array */
printf("\nData items in ascending order\n");
/* loop through array a */
for (i =0; i < SIZE; i++) {
printf("%4d", a[i]);

} /* end for */)] |

= fig07_15.c
(10f3)

31
32 printf("\n");

33

34 return 0; /* indicates successful termination */
35

36 } /* end main */

37

38 /* sort an array of integers using bubble sort algorithm */
39 void bubbleSort(int * const array, const int size)

40 {

41 void swap(int *elementlPtr, int *element2Ptr); /* prototype */
42 int pass; /* pass counter */

43 int j; /* comparison counter */

44

45 /¥* loop to control passes */

46 for (pass = 0; pass < size - 1; pass++) {

47

48 /* Toop to control comparisons during each pass */

49 for (j=0; j <size-1; j++) {

50

Sill /* swap adjacent elements if they are out of order */
52 if Carray[j 1 >array[l j + 11) {

53 swap(&array[j 1, &rray[j + 1]);

54 } /* end if */

55

56 } /* end inner for */

57

58 } /* end outer for */ | f|g07 15C
59

60 } /* end function bubbleSort #*/ (2 Of 3)
Department of ISE BMS Institute of Technology & Mgmt

Pointer Expressions and Pointeg” 3
Arithmetic =

* Arithmetic operations can be performed on
pointers

— Increment/decrement pointer (++ or --)
— Add an integer to a pointer(+ or +=, - or -=)
— Pointers may be subtracted from each other

— Operations meaningless unless performed on an
array

Department of ISE BMS Institute of Technology & Mgmt

:

Pointer Expressions and Pointer Arithmetic *

o

* 5 element int array on machine with 4 byt &z
ints

¥

— vPtr points to first element v[0]
 atlocation 3000 (vPtr = 3000)

— VPtr += 2; sets vPtr to 3008

- vPtr pointstov[2] (incremented by 2), but the
machine has 4 byte ints, so it points to address 3008

location
3000 3004 3008 3012 3016

l—» v [O] v[1] v[2] v[3] v 4]

pointer variable vPtr

| Array v and a pointer variable vPtr that points to v.
Department of ISE BMS Institute of Technology & Mgmt

The pointer VPtr after pointe
arithmetic

location
3000 3004 3008 3012 3016

v[0]l wv[1]l v[2] v[3] v[4]

. |

pointer variable vPtr

Department of ISE BMS Institute of Technology & Mgmt

Pointer Expressions and Pointeg” 3
Arithmetic =

e Subtracting pointers

— Returns number of elements from one to the

other. If
VPtr2 = v[2];
vPtr = v[0];

— vPtr2 - vpPtr would produce 2
* Pointer comparison (<, ==, >)

— See which pointer points to the higher numbered
array element

— Also, see if a pointer pointsto 0

Department of ISE BMS Institute of Technology & Mgmt

Pointer Expressions and Pointeg” 3
Arithmetic =

* Pointers of the same type can be assigned to
each other

— If not the same type, a cast operator must be used
— Exception: pointer to void (type void *)
* Generic pointer, represents any type

* No casting needed to convert a pointer to void pointer
- void pointers cannot be dereferenced

Department of ISE BMS Institute of Technology & Mgmt

OBJECTIVES

Pointer variable definitions and initialization
Pointer operators

Passing arguments to functions by reference
Using const qualifier with pointers

Bubble sort using call-by-reference

Sizeof operator

Pointer expressions and pointer arithmetic
Relationships between pointers and arrays
Array of pointers

Case study: Card shuffling and dealing simulation

Popeatn et cFISS BME Irctitute of Technology & Mgmt

The Relationship Between Point
and Arrays

* Arrays and pointers closely related
— Array name like a constant pointer
— Pointers can do array subscripting operations

* Define an array b[5] and a pointer bptr

— To set them equal to one another use:
bPtr = b;

* The array name (b) is actually the address of first
element of the array b[5]
bPtr = &b [0]

* Explicitly assigns bPtr to address of first element of b

Department of ISE BMS Institute of Technology & Mgmt

The Relationship Between Point
and Arrays

— Element b[3]
* Can be accessed by *(bPtr + 3)

— Where n is the offset. Called pointer/offset notation

e Can be accessed by bptr[3]
— Called pointer/subscript notation
— bPtr[3]Jsameasb[3]

e Can be accessed by performing pointer arithmetic on
the array itself
*Cb + 3)

Department of ISE BMS Institute of Technology & Mgmt

© 0 N O Ol WDN PP

N NN RNNMNNMNNNRNNRRRERERRERR R B
© 0N o U R WNRPO®©OD-NOOOU MNWNRE O

/* Fig. 7.20: fig07_20.cpp
Using subscripting and pointer notations with arrays */

#include <stdio.h>

int main(void)

{

int b[] = { 10, 20, 30, 40 }; /*
int *bPtr = b; [
int 1; /*
int offset; Ve

initialize array b */

set bPtr to point to array b */
counter */

counter */

/* output array b using array subscript notation */
printf("Array b printed with:\nArray subscript notation\n");

/* loop through array b */
for (i =0; 1 <4; i+) {

/ Array subscript notation

printf("b[%d] = %d\n", i, b[i]);

} /* end for */

/* output array b using array name and pointer/offset notation */
printf("\nPointer/offset notation where\n"
"the pointer 1is the array name\n");

/* loop through array b */

for (offset = 0; offset < 4; offset++) {

printf("*C b + %d) = %d\n",
} /* end for */

/ Pointer/offset notation

offset, *(b + offset));

Department of ISE BMS Institute of Technology & Mgmt

= fig07_20.c
(10f 3)

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7

/¥ output array b using bPtr and array subscript notation */
printf("\nPointer subscript notation\n");

Pointer subscript notation

/* Toop through array b */
for (i =0;1 <4; i++) {

printf("brPtr[%d 1 = %d\n", i, bPtr[i]);
} /* end for */

/* output array b using bPtr and pointer/offset notation */
printf("\nPointer/offset notation\n");

Pointer offset notation

/* loop through array b */
for (offset = 0; offset < 4; offset++) {

printf("*(bPtr + %d) = %d\n", offset, *(bPtr + offset));
} /* end for */

return 0; /* indicates successful termination */

48 } /* end main */

Array b printed with: [f|g07_20C

Array subscript notation

b[01 =10
(112 (201 3)
bl 2 1 =30
bl 31 =40

(continued on next slide...)

Department of ISE BMS Institute of Technology & Mgmt

Pointer/offset notation where
the pointer is the array name
*(b+0) =10
*Cb+1) =20
*(b+2) =30
*Cb+3) =40

Pointer subscript notation

bptr[0] = 10
bPptr[1 1 = 20
bptr[2 1 = 30
bptr[3 1 = 40

Pointer/offset notation
*CbPtr + 0) =10
*CbPtr + 1) =20
*(C bPtr + 2) = 30
*(C bPtr + 3) = 40

(continued from previous slide...)

= fig07_20.c
(3 0f 3)

Department of ISE BMS Institute of Technology & Mgmt

© 0 N O Ol WON P

NN NNNRERRPRRRRRRR R
A WNPRFPO®OWO®WMNOOUMWNIERERO

Copying a string using array notation and pointer notation. */
#include <stdio.h>

7.21: fig07_21.c

void copyl(char * const sl, const char * const s2); /* prototype */
void copy2(char *sl, const char *s2); /* prototype */

int main(void)

/* Fig.
{
char
char
char
char

stringl[10]; /* create array stringl */
string2 = "Hello"; / create a pointer to a string */
string3[10]; /* create array string3 */
string4[] = "Good Bye"; /* create a pointer to a string */

copyl(stringl, string2);
printf("stringl = %s\n", stringl);

copy2(string3, string4);
printf("string3 = %s\n", string3);

return 0; /* indicates successful termination */

} /* end main */

= fig07 _21.c

Department of ISE BMS Institute of Technology & Mgmt

25 /* copy s2 to sl using array notation */

26 void copyl(char * const sl, const char * const s2)
27 {

28 int i; /* counter ¥/

29

30 /* loop through strings */

31 for (i =0; (s1[i]1=s2[1i]1) !'= "\0"; i++) {

32 ; /* do nothing in body */

33 } /* end for */

34

35 } /* end function copyl */

36

37 /* copy s2 to sl using pointer notation */ .

38 void copy2(char *sl, const char *s2) Condition of £or loop
39 { actually performs an action
40 /* Toop through strings *

41 for (; (*s1l = *¥s2) = "\0'"; sl++, s2++) {

42 ; /* do nothing in body */

43 } /* end for */

44

45 } /* end function copy2 */

Hello
Good Bye

stringl
string3

= fig07 _21.c

Department of ISE BMS Institute of Technology & Mgmt

Arrays of Pointers
* Arrays can contain pointers

* For example: an array of strings

char *suit[4] = { "Hearts", "Diamonds",
"Clubs", "Spades" };

— Strings are pointers to the first character

— char *—each element of suit is a pointer to a
char

— The strings are not actually stored in the array
suit nnlv nninterc tn the <trinoc are <tnred

suit[0] "H' 'a' "t' 's' '\Oo"'

suit[1] ——== 'D' ‘a' m ‘o' ‘n' d' ‘s’ ‘\NO'
suit[2] e—= 'C' 1 ‘u' b’ SE "\O'

suit[3] e——mw» 'S’ 'p' 'a' 'd' ‘e’ 's' '\NO*

Department of ISE BMS Institute of Technology & Mgmt

Pointers to Functions
* Pointer to function

— Contains address of function

— Similar to how array name is address of first
element

— Function name is starting address of code that
defines function

* Function pointers can be
— Passed to functions
— Stored in arrays
— Assigned to other function pointers

Department of ISE BMS Institute of Technology & Mgmt

Pointers to Functions

 Example: bubblesort
— Function bubb1e takes a function pointer

« bubble calls this helper function
* this determines ascending or descending sorting

— The argument in bubble for the function pointer:
int (*compare)(int a, 1int b)

tells bubb1e to expect a pointer to a function that takes
two ints and returns an int

— If the parentheses were left out:
int *compare(int a, int b)
* Defines.a ' =Yal=YiV/= o integors and

Department of ISE BMS Institute of Technology & Mgmt
returns a pointer

© 0 N O Ol WDN PP

[N
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/* Fig. 7.26: fig07_26.c

Multipurpose sorting program using function pointers */
#include <stdio.h>
#define SIzE 10

/* prototypes */
void bubble(int work[], const int size, int (*compare)(int a, int b));
int ascending(int a, int b);
int descending(int a, int b);

bubble function takes a function

j'[nt mainC void) pointer as an argument

int order; /* 1 for ascending order or 2 for descending order */
int counter; /* counter */

/* initialize array a */
int a[f s1ze 1] ={ 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };

printf("Enter 1 to sort in ascending order,\n"
"Enter 2 to sort in descending order: ");
scanf("%d", &order);

printf("\nData items in original order\n");
/* output original array */
for (counter = 0; counter < SIZE; counter++) {

printf("%5d", a[counter]);
} /* end for */

Department of ISE BMS Institute of Technology & Mgmt

= fig07_26.c
(1of 4)

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

/* sort array in ascending order; pass function ascending as an

argument to specify ascending sorting order */
if C order == 1) {

bubble(a, s17zE, ascending); *
printf("\nbata items in ascending order\n");
} /* end if */
else { /* pass function descending */

bubble(a, s1ZE, descending);*
printf("\nData items in descending order\n");
} /* end else */

/* output sorted array */

for (counter = 0; counter < SIZE; counter++) {
printf("%5d", a[counter]);

} /* end for */

printf("\n");

return 0; /* indicates successful termination */

50 } /* end main */

51

depending on the user’s choice, the bubble
function uses either the ascending or
descending function to sort the array

= fig07_26.c
(20f4)

Department of ISE BMS Institute of Technology & Mgmt

52 /* multipurpose bubble sort; parameter compare is a pointer to

53 the comparison function that determines sorting order */

54 void bubble(int work[], const int size, int (*compare)(int a, int b))
55 {

56 int pass; /* pass counter */

57 int count; /* comparison counter */ .

58 | flgO7_26C
59 void swap(int *elementlPtr, int *element2ptr); /* prototype */

60 (30f4)
61 /* loop to control passes */

62 for (pass = 1; pass < size; pass++) {

63

64 /* Toop to control number of comparisons per pass */

65 for (count = 0; count < size - 1; count++) {

66

67 /* if adjacent elements are out of order, swap them */

68 if ((*compare) (work[count], work[count + 1])) {

69 swap(&ork[count], &work[count + 1]);

70 } /* end if */

;; } /* end for */ Note that what the program considers
73 “out of order” is dependent on the
74} /* end for */ function pointer that was passed to
75 the bubble function

76 } /* end function bubble */

77

Department of ISE BMS Institute of Technology & Mgmt

78 /* swap values at memory locations to which elementlPtr and

79 element2Ptr point */

80 void swap(int *elementlPtr, int *element2Ptr)
81 {

82 int hold; /* temporary holding variable */
83

84 hold = *elementlPtr;

85 *elementlPtr = *element2Ptr;

86 *element2Ptr = hold;

87 } /* end function swap */

= fig07_26.c
(40f4)

Passing the bubble function ascending
will point the program here

Passing the bubble function descending

88

89 /* determine whether elements are out of order for an ascending
90 order sort */

91 1int ascending(int a, int b)<

92 {

93 return b < a; /* swap if b is less than a */

94

95 } /* end function ascending */

96

97 /* determine whether elements are out of order for a descending
98 order sort */

99 1int descending(int a, int b) <

100 {

101 return b > a; /* swap if b is greater than a */
102
103 } /* end function descending */

will point the program here

Department of ISE BMS Institute of Technology & Mgmt

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order:
Data items 1in original order

2 6 4 8 10 12 89 68 45 37
Data items 1in ascending order

2 4 6 8 10 12 37 45 68 89
Enter 1 to sort in ascending order,
Enter 2 to sort in descending order:
Data items 1in original order

2 6 4 8 10 12 89 68 45 37
Data items in descending order

89 68 45 37 12 10 8 6 4 2

Department of ISE BMS Institute of Technology & Mgmt

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Module-5
~Structures inC

Structures

W

Prof. Swetha M S

Assistant Professor, Dept. of ISE
BMS Institute of Technology & Mgmt
Bengaluru.

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

Structures

Defn:

* |s'a user defined data type used to store values of different data types
under a common name . ' '

 Collection of data of same or different data type
Eg: o v :

e Library info: (Acc no, title, author, pub, price..)

e Student info: (rno, name, DOB, addr, marks..)

| Departmentof ISE BMS Institute of Technology and Mgmt

%

12

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Declaring Structures

struct tag -
{ ' _
//member declarations;
data_type member varl;
data_type member var2;

struct person

char name[10];
Int age;
1; - - i g g
' d Department of ISE_ BMS Institute of Technology and Mgmt. |

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT *

Defining structure variable

Note: : : : :
e Declaration of structure only list its members; it does not allocate any

memory for member variables.
* Memory is allocated only when member variables were defined.
-Syntax 1: :

struct tag var_list;

Eg: . .
struct person pl,p2;

| Departmentof ISE BMS Institute of Technology and Mgmt

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Syntax 2: :
struct tag
LA A R
member declarations;
}var_list;

- struct person
{
char name[10];
int age;
-} p1,p2;

| Departmentof ISE BMS Institute of Technology and Mgmt

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Note:

_ Itis'possible to omit structure name while declaration. Such structures
are called anonymous structures.

struct

{

- char name[lO];-l
int.age; |

1 p1,p2;

| Departmentof ISE BMS Institute of Technology and Mgmt

%
12

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Initializing structure variables

e Each structure variable contains a copy of all members of the structure.
1. struct person p1 {“ bala”, 24}

| Departmentof ISE BMS Institute of Technology and Mgmt

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Accessing structure members

» We can access structure members using dot operator(.)
Syntax

struct_var . member name
. 2. Second approach of initializing structure variables
struct person p1;
strcpy(pl.name,”bala”);
Pl.age=24,

| Departmentof ISE BMS Institute of Technology and Mgmt

BM S INSTITUTE OF TECHNOLOGY AND MANAGEMENT +H'

Eg pgm

#include<stdio.h>.
main()
LA
struct student
{
int rno;
char name[10];-
int age;
char grade;
}s1;
s1.rno=101;
strcpy(sl.name,”james”);
sl.age=24; '
sl.grade="A’;

printf(“\n student details\n”);
printf(“Rollno: %d”,s1.rno);
printf(“Name: %s”, sl.name);
printf(“Age: %d”, s1.age);
printf(“Grade: %c ”, s1.grade);
return O;

}
OUTPUT:

student details
Rollno: 101
Name: ja‘mes
Age: 24
Grade:A

BM S INSTITUTE OF TECHNOLOGY AND MANAGEMENT +H'

Eg pgm

#include<stdio.h>.
main()
L
struct student
{
int rno;
char name[10];-
int age;
char grade;
}s1;
printf(“Enter Roll No:\n");
scanf(“%d”, &s1.rno);
printf(“Enter Name :\n”);
gets(s1.name);
printf(“Enter Age:\n”);
scanf(“%d”, &sl.age);
printf(“Enter Grade:\n");
scanf(“%c”, sl.grade);

printf(“\n student details\n”);
printf(“Rollno: %d”,s1.rno);
printf(“Name: %s”, sl.name);
printf(“Age: %d”, s1.age);
printf(“Grade: %c ”, s1.grade);
return O;

}
OUTPUT:

student details
Rollno: 101
Name: ja'mes
Age: 24
Grade: A

amid 3 e

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

Nested Structures

"o A structure inside another structure is called nested structure.

2 ways | | | '

1. The complete definition of a structure is placed inside the definition
of another structure.

2.~ Structures are defined separately and variable of structure type is -
. declared inside another structure.

| Departmentof ISE BMS Institute of Technology and Mgmt

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Nested Structures
‘Ist Approach g 2" Approach
~ struct student . ~ . structdate
{ {
int day,month,year;
o oy

struct student.

intrno;,
char name[20];
struct date

{ {

“int day, month, year; Int rno; o

1 dob; char.name[20]; |
}stqdl- struct date dob;

}studl;

%

12

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Accessing nested structure

-» |f a structure A has another Structure B nested inside it
struct A

{

s’éruct B

{
1b;

Ja;
Then b data members can be accessed by a.b.data member

| Departmentof ISE BMS Institute of Technology and Mgmt

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT *"

Eg

t#tinclude<stdio.h> void main()

struct Address {

{ char HouseNo[25]; e

char City[25]; 4

char PinCode[25]; struct Employee E;

1 - printf("\n\tEnter Employee Id : ");
?ti:icltjl.imployee scanf("%d", &E.Id);

ehor N’ame[25]; printf("\n\tEnter Employee Name : ");
float Salary; scanf("%s", &E.Name);

str‘uct AddressAdd; printf("\n\tEnter Employee Salary : ");
b . scanf("%f", &E.Salary);

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

printf("\n\tEnter Employee House No:");

-scanf("%s" &E. Add HouseNo);

printf("\n\tEnter Employee City :)
scanf("%s",&E.Add.City);

printf("\n\tEnter Employee House No : ");
‘scanf("%s",&E.Add.PinCode);

prlntf("\nDetails of Employees"); |
printf("\n\tEmployee Id : %d",E. Id)
printf("\n\tEmployee Name : %s",E.Name);
“printf("\n\tEmployee Salary : %f'",E.Salary);
printf("\n\tEmployee House No : %s",E.Add. HouseNo);
prmtf("\n\tEmponee City-: %s",E. Add. City);
printf("\n\tEmployee House No : %s",E.Add.PinCode);
 ocparimentof SE _ oS Instiute of Teomlogy and ot

o

12

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

OUTPUT

Enter Employee Id : 101 =

Enter Employee Name : Suresh
Enter Employee Salary : 45000
Enter Employee House No : 4598/D
Enter Employee City : Delhi

-Enter Employee Pin Code : 110056
Details of Employees

Employee Id : 101

Employee Name : Suresh
Employee Salary : 45000
‘Employee House No : 4598/D
Employee City : Delhi

Employee Pin Code : 110056°

| Departmentof ISE BMS Institute of Technology and Mgmt

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Arrays of Structure

~* Arrays of structure type is required when you need to apply the same
structure to a set of objects.

Syntax
struct student

{
int rno; :
~ char name[20];
} stud[3]; //arrays of structure.’

| Departmentof ISE BMS Institute of Technology and Mgmt

— BM S INSTITUTE OF TECHNOLOGY AND MANAGEMENT “H’

#include <stdio.h>
struct student
e .
char name[50];
int roll;
float marks;

;-
int main()
{
struct student s[10]; - // Array of structure
inti;) - I
printf("Enter information of students:\n");
for(i=0;i<10;++i).

{

s[i].roll=i+1;

printf("\nFor roll number %d\n",s[i].roll);

| Departmentof ISE BMS Institute of Technology and Mgmt

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

printf("Enter name: ");

scanf("%s",s[i].name);

printf("Enter marks: ");

scanf("%f",&s[i].marks);

printf("\n");

}

printf("Displaying information of students:\n\n");

for(i=0;i<10;++i)

{ = . . .
printf("\nInformation for roll number %d:\n",i+1);
printf("Name: ");
puts(s[i].name);

printf("Marks: %.1f",s[i]. marks)

} .

return O;

3 Departmentof ISE BMS Institute of Technology and Mgmt

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

OUTPUT for Arrays of structure

_Enter information of students:
For roll number 1

Enter name: Tom

Enter marks: 98

‘For roll number 2
Enter name: Jerry
Enter marks: 89

‘Displaying information of students:
Information for roll number 1;
Name: Tom ' :
Marks: 98 . ..

3 Departmentof ISE BMS Institute of Technology and Mgmt

) BM S INSTITUTE OF TECHNOLOGY AND MANAGEMENT +’

Structures and functions

In C, structure can be passed to functions by two methods:
* Pass by value (passing actual value as argument)

* Pass by reference (passing address of an argument)
Passing structure by value -

A 'structure variable can be passed to the functlon as an’
argument as normal variable.

If structure is passed by value, change made in structure variable
in function. definition does not reflect in original structure
variable in calling function.

3 Departmentof ISE BMS Institute of Technology and Mgmt

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Passing structure by reference

The address location of structure variable is passed to function
while passing it by reference.

If structure is passed by reference, change made in structure
variable in function definition reflects: in original- structure
variable in the calllng functlon

| Departmentof ISE BMS Institute of Technology and Mgmt

<) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

Passing structure by value

-#in-lclude <stdio.Hl>
- struct student
{ char name[50]; int roll;
Iy
void Display(struct'student stu);

/* function prototype should be below to the structure declaratlon otherwise
~ compiler shows error */ ~ ~ |)

int main()
{ struct student s1;
printf("Enter student's name: ");
scanf("%s",&s1.name);
printf("Enter roll number:");
scanf("%d",&s1:roll);
Display(s1); // passing structure variable s1 as argument
return O;

| Departmentof ISE BMS Institute of Technology and Mgmt

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

void Display(struct student stu)
~ printf("\nName: %s",stu.name);
printf("\nRoll: %d",stu.roll);
9 .
- OUTPUT
Enter student's name: Kevin
Enter roll number: 149
Name: Kevin.
Roll: 149

3 Departmentof ISE BMS Institute of Technology and Mgmt

&

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Passing structure by reference

- #include <stdio.h>
strdct distance |
{ int feet;
floatinch;}; | , .
~ void Add(Struct distance d1,struct distance d2, struct distance
*d3);
int main() _ .
-{ struct distahce, dist1, di$t2,, dist3; 4
printf("First distance\n");
printf("Enter feet: ");
scanf("%d",&dist1l.feet); - - v /S v S
- { oepartmentot & _ oS nsiuts o Technologyana gmt

"'_-{ BM S INSTITUTE OF TECHNOLOGY AND MANAGEMENT “H’

printf("Enter inch: ");

scanf("%f",&distl.inch); -

printf("Second distance\n");

printf("Enter feet: "); |

scanf("%d",&dist2.feet);

printf("Enter inch: ");

scanf("%f",&dist2.inch);

Add(dist1, dist2, &dist3);

/*passing structure variables dist1 and dist2 by value whereas
‘passing structure variable dist3 by reference */ ' |
printf("\nSum of distances = %d\'-%.1f \"",dist3.feet, dist3.inch);
return O;

| Departmentof ISE BMS Institute of Technology and Mgmt

12

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

void Add(struct distance d1,struct distance d2, struct distance *d3) .
{ | | | |
/* Adding distances d1 and d2 and'storing it in d3 */
d3->feet=d1.feet+d2.feet;
'd3->inch=d1.inch+d2. mch
|f (d3->inch>= -12) .
{/*if inch is greater or equal to 12, convertmg it to feet. */
d3->mc_h-=12,
++d3_->f,eet;

| Departmentof ISE BMS Institute of Technology and Mgmt

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

OUTPUT

First distance
Enter feet: 12
Enter inch: 6.8
‘Second distance
Enter feet: 5
Enter inch: 7.5
Sum of distances = 18'-2.3"

| Departmentof ISE BMS Institute of Technology and Mgmt

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

typedef

* Reserved keywordinc | | |
* It allows you to create a new data type name for an existing data type.

* We can create a new data type name for primitive as well as user
defined data type.

ASyntax:

typedef old_data_type new data type;

| Departmentof ISE BMS Institute of Technology and Mgmt

) BM S INSTITUTE OF TECHNOLOGY AND MANAGEMENT +’

typedef

typedef int integer; struct emp
integer a,b,c; {
integer a[10]; int emp_id;
Typedefint raju | ;har name[10};
raju a; ' ¢
Raju b; ' typedef struct emp employee;

employee empl,emp?2;

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT *“’

Typedef eg ‘{”t aingy

#finclude <stdio.h> Book book[10]; |
#include <string.h> strcpy(book.title, "C Programming");

typedef struct Books strcpy(book.author, "Nuha Ali");

{ strepy(book.subject, "C Programmlng”)
| | book.book_id = 6495407;

char title[50];

char author[50]: printf("Book title : %s\n", book. t|tIe)

char subject[100]; printf("Book author : %s\n", book.author);

int book id; printf("Book subject : %s\n", book.subject);

} Book[10]; ' printf("Book book id : %d\n",book.book_id);
return O;

}

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f’

typedef vs #define

* #fdefine is a C-directive which is also used to define
the aliases for ~ various data types similar
to typedef but with the following differences -

—typedef is limited to giving symbolic names to types only’
‘where as #define can be used to define alias for values as
well, you can define 1 as ONE etc.

—typedef interpretation 'is performed by the compiler
~whereas #define statements are processed by the pre-
_processor.

3 Departmentof ISE BMS Institute of Technology and Mgmt

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Unions

"o Unions are similar to structures used to store values of different data -

types.
union tag_name

{
data typel varl;

- data_type2 var2;

| Departmentof ISE BMS Institute of Technology and Mgmt

* 1.The keyword struct is used to define a
structure

2. When a variable is associated with a
structure, the compiler allocates the memory
for each member. The size of structure is
greater than or equal to the sum of sizes of
its members. The smaller members may end
with unused slack bytes.

3. Each member within a structure is assigned
unique storage area of location.

4. The address of each member will be in
ascending order This indicates that memory
for each member will start at different offset
values.

5 Altering the value of a member will not
affect other members of the structure.

6. Individual member can be accessed at a
time

7. Several members of a structure can
initialize at once.

1. The keyword union is used to define a
union.

2. When a variable is associated with a union,
the compiler allocates the memory by
considering the size of the largest memory.
So, size of union is equal to the size of largest
member.

3. Memory allocated is shared by individual
members of union.

4. The address is same for all the members of
a union. This indicates that every member
begins at the same offset value.

5. Altering the value of any of the member
will alter other member values.

6. Only one member can be accessed at a
time.

7. Only the first member of a union can be
initialized.

P %

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

€8

- Struct stu

{
char c;
int |;
' float:p; -~ // Total size: 7 bytes
. };) . J) ! J A)
union emp
{
char c[20];
intl;

. floatp; - //total'bytes: 4 bytes

| Departmentof ISE BMS Institute of Technology and Mgmt

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f*’
Lab Program -13. STRUCTURES

Implement structures to read, write, compute average-
marks and the students scoring above and below the
average marks for a class of N students

1) -Program to maintain a-record of student using structure
#include <stdio.h>

struct student

{

ch'ar usn[50];

char name[50]; .

int marks;

} s[10];

3 Departmentof ISE BMS Institute of Technology and Mgmt

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

void main()

{

inti,n,countav=0,countbv=0; float sum,average;
clrscr();

printf("Enter number of Students\n"), scanf(“%d" &n);
printf("Enter information of students:\n");

2)Storing information

for(i=0;i<n;i++)

{

printf("Enter USN: ");
scanf("%s",s[i].usn);
printf("Enter name: ");
scanf("%s",s[i].name);
printf("Enter marks: ");
scanf("%d",&s[i].marks);
printf("\n");

} ' 3 Departmentof ISE BMS Institute of Technology and Mgmt

Py
et R o

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

3)displaying information
printf("Displaying Information:\n\n");
-for.(li=0; i<n; i+-i-) . e
T | . |
printf("\nUSN: %s\n",s[i].usn); printf("Name: ");
puts(s[i].name);

“printf("Marks: %d",s[i].marks); printf("\n");
for(i=0;i<n;i++)

{

‘sum=sum-+sl[i].marks;

}

average=sum/n;

printf("\nAverage marks: %f",average);

| Departmentof ISE BMS Institute of Technology and Mgmt

"'_-{ BM S INSTITUTE OF TECHNOLOGY AND MANAGEMENT ‘*’

countav=0;

-countbv=0; -
for'(_i=0;i<n;i++) -

{

if(s[i].marks>=average)
countavt+; ‘
else |

}

countbv++;

printf("\nTotal No of students above average= %d",countav);.
printf("\nTotal No of students below average= %d",countbv);

}

| Departmentof ISE BMS Institute of Technology and Mgmt

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Output

1 N=3, Enter the student details -Avemge [Avera ge
' marks:520 marks:520

USN Name Marks
Total No of Total No of

S[O] | IRN18CS001 | Chetan | 500

students students above
S[1] | IRN18CS002 | Darshan | 510 above average=l
average=1

Total No of
Total No of students below
students average=2

S[2] | IRN18CS003 | Pallavi | 550

below
average=2

| Departmentof ISE BMS Institute of Technology and Mgmt

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

Module-5

Pointers in C

Prof. Swetha M S

Assistant Professor, Dept. of ISE
BMS Institute of Technology & Mgmt
Bengaluru.

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f*’
OBJECTIVES

. Pomter variable defmltlons and |n|t|aI|zat|on'
* Pointer operators

* Passing arguments to functions by reference
* Pointer expressions and pointer arithmetic

* Relationships between pointers and arrays

* Array of pointers

* Character pointer and functions

* Pointer to pointer

3 Departmentof ISE BMS Institute of Technology and Mgmt

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7
POINTERS

iable.

definition: Pointer is a variable that holds the address of anf)ther variable
aratior andlniﬁlizaﬂonofppinters -
h operators used to represent pointers are:
' o Address operator (&)
. . Indirection operator (*)
ko iable name
*ptr_varlab : 2 | |
= iable name R .

ere variab ble &nmnvareliz the variable whose address has to be sto inter
where 2

10;
at *ptr’ En ,
B value of a.
YPLE= 27 - sress of varisble ‘a” and *ptr holds e
mptrtsapomwf .

8/24/2020 , | Departmentof ISE BMS Institute of Technology and Mgmt , 43)

program:
tinclude<stdlo.h>
:finclude<co?io.h>
| (

”
rintf(“%d\n £
grintf(“%d\n”v *

get&h()7

&}
- Output:
- 10

) = ,
- 2056 d 2056—— Address where the value of
10 ‘a’:101s stored

(&a)

8/24/2020 d Department of ISE

BMS Institute of Technology and Mgmt

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT *ﬁ

.

1

2 /*Using the & and * operators */

3 #include <stdio.h>

4

5 1int main(void) - >
6 i _ _ O fIgO7 04.c
7 int a; /¥ a is an integer */ ' 3 _

8 int *aPtr; /* aPtr is a pointer to an integer */ (1 Of 2)

9

10 a=717;

11 aPtr = &a; /* aPtr set to address of a */

12

13 printf("The address of a is %p" .

14 "\nThe value of aPtr is %", &, aPtr); «— | If aPtr points to a, then &a and
15 aPtr have the same value.

16 printf("\n\nThe value of a is %d" .

17 "\nThe value of *aPtr is %d", a, *aPtr); < a and *aPtr have the same value
18

19 printf("\n\nShowing that * and & are complements of "

20 "each other\n&*apPtr = %p"

21 “\n*&aPptr = %p\n", &*aPtr, *&aPtr); «——— g*aPtr and *&aPtr have the same value
22

23 return 0; /* indicates successful termination */

24

25 } /* end main */

| Departmentof ISE BMS Institute of Technology and Mgmt

&} BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT ’V

The address of a is 0012FF7C
The value of aPtr is 0012FF7C

The value of a is 7
The value of *aPtr is 7

Showing that * and & are complements of each other.
&*aPtr = 0012FF7C
*&aPtr = 0012FF7C

= fig07_04.c
__(20f2)

| Departmentof ISE BMS Institute of Technology and Mgmt

-

8

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Pointers and functions

2.1. Pointers and functions (call by reference) |

Call by reference method involves use of address of variables as actual parameters in calling
function and pointer variables with (*) indirection operator is used at called functioy o
perform required operations that is as formal parameters..

Consider an example of swapping two numbers using call by reference or using pointers
#include <stdio.h>

#include<conio.h>

void swap (int *a, int *b);

void main()

{

-~

int x =10, y = 20; °

swap (&x, &y);

printf (“after swapping:\nx=%d\ny=%d”, x,y);
getch(); ' '

8/24/2020 , | Departmentof ISE BMS Institute of Technology and Mgmt , 47)

«s BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT ’V

void swap (int *a, int *b)

{
int temp;
temp = *a;
*a - *b;
*b = temp;

}

Output: |

after swapping:

x=20

y=10

Here instead of passmg actual values of xandy pomters, address of x and y are passed.

8/24/2020 ¢ | Departmentof ISE BMS Institute of Technology and Mgmt 48)

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Cube a variable using call-by-value
#include <stdio.h> _ o
int cubeByValue(int n) /* prototype */
int main(void) | ‘ '
{ :
int number = 5;
printf("The original value of number is %d", number);
/* pass number by value-to cubeByValue */
number = cubeByValue(number);
printf("\nThe new value of number is %d\n", number);

return O;
}
int cubeByValue(int n)
returnn *n *n;_
}

The original value of number is 5

The new value of number is 125

3 Departmentof ISE BMS Institute of Technology and Mgmt

BM S INSTITUTE OF TECHNOLOGY AND MANAGEMENT +H'

Call-by-reference with a pointer argument

Function prototype takes a pointer argument

#include <stdio.h> e o
void cubeByReference(int *nPtr); /* prototype */

int main(void) : : Function cubeByReference is
{ passed an address, which can be

int number =5 the value of a pointer variable
printf("The original value of number is %d", Nnbrroer—;

/* pass address of number to cub Reférence */
cubeByReference(- &num '

printf("\nThe new value of number is %d\n", number);

return O;

} In this program, *nPtr is
void cubeByReference(int_*nP:cr)/ number, S0 this statement
{ modifies t_he value of

*nPtr = *nPtr x*nPtr x *nPtr; /* cube *nPtr */ nunbar ifself. |
} : : : :

3 Departmentof ISE BMS Institute of Technology and Mgmt

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Pointers and array
- 2.2, Pointers and arrays |

The operations performed using array concept can also be done using pointers.
Syntax: |
data_type *ptr name;
| ptr_name = garray name or ptr name = array name; <
Here pointer does not point to all the elements of an array, instead initially it points to the
first element of an array later which is incremented to get other elements.
Example: int a[10] = (11,12,13,14);
int * ptr; o
Ptr= &a or ptr=a; h i$ pointi Injti
 Hcanbe explined i bgow meg ptr 18 pointing to 11 initially,

8/24/2020 , | Departmentof ISE BMS Institute of Technology and Mgmt , 51)

#include<conio.h>
void main()

{

int a[101={11,12,13,14);
int *pte;

- . /*initially pointing to first element 11%*/
-(ptt’?;zo' i<4; i++) /* four elements*/
~ for

printf(“%d\t”, a[i!);
printf(“%d\n", galil):
printf(“%d\t”, *ptr);
printf(“%d\t”, ptr):

+; : _ . o
3Er;aking ptr to point next value by doing ptr
ptr+l*/

‘ getch();

8/24/2020

| Departmentof ISE BMS Institute of Technology and Mgmt

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

»)

and address where that value is stoned:/
where that value is stored®/

E . a[0] pointed by ptr at first iteration
a gggg /[: ::lh\l; il;; ‘;inted by ptr at first iteration and address

i nd
+value a[1] pointed by ptr at SCCOTF 72 o ek v
2022 ,/':alue :[pu- pomted by ptr at first iteration and address | ’
A where that value 18 stored

n and address ; i

int third iteratio g
L -J :: :z gtt::tt first iteration and address where that value i §

2060 /*v al}‘e *ptr poin - < here that valoe i< stored®/
1era

2062 [*value :’[2 zi“;;‘:j ‘t’; : ir at first iteration and address where
2062 /*value

6 1B B

05 2 bytes for each
I 2l ey st TE
12056 | 2058 2 = element. If it re?ewaddress, el SO
N N _ ‘{ element (als s{mmﬂemg, 2 anting address
nd elem
Initial position of ptr L;f,;?pzoso for third element and so 0D

——ms . s\ A AAAQ m'

8/24/2020 , | Departmentof ISE BMS Institute of Technology and Mgmt , 53)

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

Pointers to Strings

2.3. Character pointer and functions or Pointers to the strings

Strings are array of characters instead of ; inter
f cha of integer values of arra 1 '
cﬁmnwﬂxpnmmﬂnnmnngnnmawnwdasananay e e
Syntax: data_type &ptr name; .
Ptr name = string name;.

Example: char Str(20]) = “america”
char *ptr; 5

#include<stdio.h>
#$include<conio.h>

8/24/2020 , | Departmentof ISE BMS Institute of Technology and Mgmt , 54)

str2[i]=*ptr;
ptr++;

}
 gtr2(il="\0";
. printf(“string2 after cop

getch()7

ying is %s”, str2):

8/24/2020 ¢ | Departmentof ISE BMS Institute of Technology and Mgmt

8/24/2020

\0

2056

=

N

since ies 1 bytes for
. ~e character type occupics

each element. If it reserves 2051 for first
element as starting address, or's
2051+1=2052 as second elem .
starting address, 2052+1=2053 for third

element and so on.

| Departmentof ISE BMS Institute of Technology and Mgmt

8

&

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Pointer to Pointer
2.4. Pointer to poi_nter '

: n_'mﬂon:
3 pointer_name = &another_pointer name
" The below example demonstrates pointer to pointer concept:
= &aj;
::.;lz = &ptrl; /*ptr2 is the pointer to the another pointer ptr1*/

ptr2 . ptrl a

value stored in pointer 1283\ 2056 |——{ 10

\
address where pointer 3256 1283 2056
- walue is story / /

address of ptr2 address of ptrl . address of “a’

Figure 1: Pointer to pointer ‘ 57 &

A

8/24/2020

‘include <stdio.h>
“#include<conio.h>
 woid main()

int a=10;

int *ptrl, **ptr2;
ptrl = &a;s

ptr2 = &ptrl; -
printf (“%d\n", a);
printf (“¢d\n”, &a) ;
printf (“%d\n”, ptrl);
printf (*%¥d\n”, &ptrl);
printf (*%d\n", *ptrl);
printf (“3d\n”, ptr2);
printt (“$d\n", *ptr2);
printf (“%d\n", **ptr2);
getch()7

output
10

—»2056

—»2056

»1283
—p1 O

—.283

—2056

—p1 0

l Departmentof ISE BMS Institute of Technology and Mgmt

58)

Address arithmetic

2.5. Address Arithmetic

1. An integer value can be addaed or subtracted from a pointer. It can be incremented or

Armay [11 9 8 14 a
5050 | 2052 | 2054 | 2056 | Address

2 bytes difference since it is integer

#include <stdio.h>
#include<conio.h>

8/24/2020 ¢ | Departmentof ISE BMS Institute of Technology and Mgmt

void main()

{

8/24/2020

int a(4)=(11,9,8,14);

int *ptr

ptr = ga; outpst
Printf (“%d\n”, ptr); —» 2050
printf(“%d\n”, *ptr): — 11
ptr+4; /* we can use ptr=ptr+l or ptr+=1 */
printf (“%d\n", ptr); — 2052
Printf(“sd\n”,* ptr); , gy

pPtr--; /* we can use ptr=ptr-1 or ptr- =1*/
printf (“%d\n”, ptr); — 2050
printf (“%d\n”, *ptr); 1]
getch();

| Departmentof ISE BMS Institute of Technology and Mgmt

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

LUMMpoinﬁubmtypeofdﬂatbenonepointcrvalueunbemigmdw

Example: int *ptrl, *ptr2;
| ptrli=ptr2;
3. Pointer can be assigned a Null
Exgmple; int *ptrl;
ptrl=NULL;
luShhuumnunofumopohmuwwvhbkucnnhc;nﬂbunadvﬂumlxuhanapmhﬁmguoekmrmﬂ
of same array.
~ 8. Two pointers cannot be multiplied added or dlvided directly
6. Relational operators can be used between the pointer
Example: int * ptrl, * ptr2;

ptrl>ptr2 , ptrl=ptr2, ptril<ptr2 etc.

8/24/2020 , | Departmentof ISE BMS Institute of Technology and Mgmt , 61 »

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

Tod

Advantages and disadvantages

2.6. Advantages and disadvantages of pointers

Mdpdlunhc
memmmy
Pointers provide & way to return’ more than one value 1o the functions
Wathew»wemdoompluityoﬁbm
Reduces the execution time of the program |
Provides an alternate way to access array elements

.. pointers can be used to pass information back and forth between the calling function
_ ‘o and called function. . .
pointers allows us to perform dynamic memory allocation and deallocation.
Pointers helps us to build complex data structures like linked list, stack, queues, trees,
. v

hs etc. .
g.?;.m allows us to resize the dynamically allocated memory block.

8/24/2020 , 3 Departmentof ISE BMS Institute of Technology and Mgmt , 62)

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7
tages of pointer in C

s itialized pointers might cause segmentation fault se, it would lead 10

E° UD!mmmam“ ically El(;ocated block needs to be freed explicitly. Otherwise, it woul
memory lezk than normal variables. on

E ° I;:m@te:sre arseloupdatedwer with incorrect values, it might lead to memory coRmpHe

[o Ipon

8/24/2020 | Departmentof ISE BMS Institute of Technology and Mgmt 63)

f?ihclude <st§io.h>
’ﬁiinclude<conio.h>
| yoid main()

_%;‘

printf(“enter number ©
scanf(“%d”, &n) 7
¥§§=7;= ; i<n; i++) ‘
: . :
{. e A . +aelf an address™/ .
¥eabhl :née ptr 1tse |
| ol since P |
/* no & symb
ptrtti

} ORIy NG| nmp_nt*/

8/24/2020 ¢ | Departmentof ISE BMS Institute of Technology and Mgmt . 64)

Array eleme
31 12 -3

8/24/2020 ¢ | Departmentof ISE BMS Institute of Technology and Mgmt

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

Lan Program 14- USE OF POINTERS

- Develop a program usmg pomters to
compute the sum, mean and standard
deviation of all elements stored in an
~array of n real numbers

8/24/2020 , | Departmentof ISE BMS Institute of Technology and Mgmt , 66

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

The formula for standard deviation (SD)

Standard Deviation

Mean (x) = % | J > |z — z|?
SD —

n U_\/(i(—x{)2+(2~x;~_)2+...+[)‘(—x{,}'z
n

e Step 1: Find the mean.

* Step 2: For each data point, find the square of its distance to the mean.
_* Step 3: Sum the values from Step 2.

* Step 4: Divide by the number of data paints. .

* Step 5: Take the square root.

8/24/2020 , 3 Departmentof ISE BMS Institute of Technology and Mgmt 67 »

v

&) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 7

#include<stdio.h>

#include<conio.h>

.#ih_clude<ma.th.-h>

int main()

{

float a[10], *ptr, mean, std, sum=0, sumstd=0;
intn,i;

clrscr();

printf("Enter the no of elements\n"); scanf("%d",&n);
‘printf("Enter-the array elements\n"); for(i=0;i<n;i++)
scanf("%f",&ali]);

}
ptr=a;

8/24/2020 , 3 Departmentof ISE BMS Institute of Technology and Mgmt , 68

e
0 R
£

<) BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

for(i=0;i<n;i++)
8- o
sum=sum+ *ptr; ptr++;

}

mean=sum/n; ptr=a;

for(i=0;i<n;i++)

{ | | |
sumstd=sumstd + pow((*ptr - mean),2);

ptr++;

- :

std= sqrt(sumstd/n); |
printf("Sum=%.3f\t",sum); prmtf("Mean—% 3f\t",mean);
printf("Standard deviation=%.3f\t",std);

‘return O;

} 8/24/2020

| Departmentof ISE BMS Institute of Technology and Mgmt , 69 »

A
L
i Ay
NN

e -

BM S INSTITUTE OF TECHNOLOGY AND MANAGEMENT “H’
14.2 Test Cases

T;;zt Input Parameters Expected output Obtained output Ren:ark
N=5 Sum=28 Sum=28.000
l Array elements Mean=5.6 Mean=5.600 PASS
15967 Standard deviation=2.09 | Standard deviation=2.098
N=4 Sum=10.68 Sum=10.680 PASS
2 Array elements Mean=2.67 Mean=2.670 '

2.31.14.52.78 Standard deviation=0.863 | Standard deviation=0.863

Test for the following cases and Records

N=5
3 Array elements
234810
N=6
Array elements
2456204.125.17
0.14

8/24/2020 , | Departmentof ISE BMS Institute of Technology and Mgmt , 70 »

«» BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT f'

Viva Question

1. Define pointer? | |

2. How do you declare a pointer variable?

3. What is * and &in pointer concept.

4. What are the advantages and disadvantages of using pointer?

5. Give the difference between static allocation and dynamic allocation of |
memory space.

6. What is the effect of the ++ and --operators on pointer variable
7. Explain the pointers to arrays concept?

8/24/2020 , 3 Departmentof ISE BMS Institute of Technology and Mgmt 71)

- Module-5 .
Dynamic memory allocation

Prof Swetha M S
Assistant Professor
ISE-BMISIT&M

Department of ISE = BMS Institute of Technology & Mgmt 5-1

! i:"i'. []
%’b A

Types of memory allocation{g 4
yp ry 9

Memory
Allocation

| Static | | Dynamic I

Department of ISE BMS Institute of Technology & Mgmt

Static vs Dynamic Memory

Definition
Static memory allocation is a method of Dynamic memory allocation is a method of J
allocating memory, and once the memory is allocating memory, and once the memory is
allocated, it is fixed. allocated, it can be changed.

Modification

In dynamic memory allocation, the
memory can be minimized or maximize
accordingly.

In static memory allocation, it is not
possible to resize after initial allocation.

Implementation
Static memory allocation is easy to Dynamic memory allocation is complex
implement. to implement.
In static memory, allocation execution is In dynamic memory, allocation execution
faster than dynamic memory allocation. Is slower than static memory allocation.

Memory Utilization

Dynamic memory allocation allows
reusing the memory. The programmer can
allocate more memory when required .
He can release the memory when
necessary.

In static memory allocation, cannot reuse
the unused memory.

allocation

» The exact size of array is unknown untill the
compile time.

* The size of array you have declared initially can
be sometimes insufficient and sometimes more
than required.

Department of ISE BMS Institute of Technology & Mgmt

e
Yl ; P
*‘,@ = A2
N

« Dynamic memory allocation allows a program to

obtain more memory space, while running or to
release space when no space is required.

Functions defined in (stdlib.h)
« malloc-stands for memory allocation.

Dynamic memory allocatio

 calloc-stands for contiguous allocation.
« realloc-stands for reallocation
* free- to release the space

Department of ISE BMS Institute of Technology & Mgmt

Dynamic memory allocation
Functions

Allocates requested
size of bytes and
malloc() returns a pointer
first byte of
allocated space

Allocates space for
an array elements,
calloc() initializes to zero
and then returns a
pointer to memory

dellocate the
free() previously allocated
space

Change the size of
realloc() previously allocated
space

Department of ISE BMS Institute of Technology & Mgmt

malloc () e

* The malloc() function returns a pointer to an
area of memory with size of byte size. If the

space is insufficient, allocation fails and returns
NULL pointer.

Syntax

« ptr=(cast-type*)malloc(byte-size)
Eg:

» ptr=(int*)malloc(100*sizeof(int));

Department of ISE BMS Institute of Technology & Mgmt

calloc ()

o e
e The name calloc stands for "contiguous allocation".‘rﬁ?;
only difference between malloc() and calloc() is that,
malloc() allocates single block of memory whereas
calloc() allocates multiple blocks of memory each of
same size and sets all bytes to zero.

Syntax

« ptr=(cast-type*)calloc(n,element-size);

Eg:
« ptr=(float*)calloc(25,sizeof(float));

Department of ISE BMS Institute of Technology & Mgmt

realloc ()

» If the previously allocated memory using malloc
and calloc is insufficient or more than sufficient.
Then, you can change memory size previously
allocated using realloc()

Syntax
» ptr=realloc(ptr,newsize);

Eg:
« ptr=realloc(ptr,100*sizeof(char));

Department of ISE BMS Institute of Technology & Mgmt

free

 Dynamically allocated memory with either
calloc() or malloc() does not get return on its
own. The programmer must use free() explicitly
to release space.

Syntax

 free(ptr);

Department of ISE BMS Institute of Technology & Mgmt

Example pgm using mallg¢
#include<stdio.h> X et P

#include<string.h>

#include<stdlib.h>

int main()

{ char *mem_alloc; /* memory allocated dynamically */
mem_alloc = malloc(15 * sizeof(char));

if(mem_alloc== NULL)

{
printf("Couldn't able to allocate requested memory\n");
}
else
{
strcpy(mem_alloc,“hai hello ");
}

printf("Dynamically allocated memory content : %s\n", mem_alloc);
free(mem_alloc);

Department of ISE BMS Institute of Technology & Mgmt

O/P

 Dynamically allocated memory content: hai hello

Department of ISE BMS Institute of Technology & Mgmt

Example pgm using calloc

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

int main()

{ char *mem_alloc; /* memory allocated dynamically */
mem_alloc = calloc(15, sizeof(char));
if(mem_alloc== NULL)

{
printf("Couldn't able to allocate requested memory\n");
}
else
{
strcpy(mem_alloc,“hai hello every one");
}

printf("Dynamically allocated memory content : %s\n", mem_alloc);
free(mem_alloc);

Department of ISE BMS Institute of Technology & Mgmt

O/P

« Dynamically allocated memory content:
hai hello every one

Department of ISE BMS Institute of Technology & Mgmt

Example program for reallog”:®

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int main()

{ char *mem_alloc; /* memory allocated dynamically */
mem_alloc = malloc(20 * sizeof(char));

if(mem_alloc == NULL)

{

printf("Couldn't able to allocate requested memory\n");

}

else

{

strcpy(mem_alloc,“hai hello every one");

Department of ISE BMS Institute of Technology & Mgmt

printf("Dynamically allocated memory content : " \ "%s\n",
mem_alloc);
mem_alloc=realloc(mem_alloc,100*sizeof(char));

if(mem_alloc == NULL)

{

printf("Couldn't able to allocate requested memory\n");

)

else

{

strcpy(mem_alloc,"space is extended upto 100 characters");

}

printf("Resized memory : %s\n", mem_alloc);
free(mem_alloc);

}

Department of ISE BMS Institute of Technology & Mgmt

Output

« Dynamically allocated memory content: hai hello
every one

» Resized memory: space is extended upto 100
characters

Department of ISE BMS Institute of Technology & Mgmt

memory dynamically using malloc() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

int n,i,*ptr,sum=0;

printf("Enter number of elements: ");
scanf("%d",&n);
ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc
if(ptr==NULL)

{ printf("Error! memory not allocated.");
exit(0);

}

Department of ISE BMS Institute of Technology & Mgmt

printf("Enter elements of array: ");
for(i=0;i<n;++i)

{
scanf("%d",ptr+i);

sum+=*(ptr+i);

}

printf("Sum=%d",sum);

free(ptr);
return O;

Department of ISE BMS Institute of Technology & Mgmt

