
Department of Information Science and Engg

Transform Here

Module 1:
INTRODUCTION TO COMPUTER

HARDWARE AND SOFTWARE

Swetha M S

Asst. Professor

Dept. of ISE

BMSIT&M

Department of Information Science and Engg

Transform Here

What is computer?
A Computer is device that can automatically
performs a set of instructions. The computer takes
as input these instructions as a single unit, uses
them to manipulate the data, and outputs the
results in user-specified ways. The processing is
fast, accurate and consistent, and is generally
achieved without significant human intervention.

Department of Information Science and Engg

Transform Here

History of Computer

Department of Information Science and Engg

Transform Here

COMPUTER GENERATIONS

Generation Based on Other Features

First. Vacuum tubes Magnetic drums for memory

Second Transistors
Magnetic cores, disks, punched cards and

printouts

Third.
Integrated circuits

(ICs)
Keyboard, monitor and operating system

Fourth Microprocessors Networking

Fifth
ULSI Nano

technology.
Mainly unclear

Department of Information Science and Engg

Transform Here

Vacuum Tubes: The First Generation

Memory requirements were met by magnetic drums (forerunner of today's
hard disk).

 Because of the size of vacuum tubes, first generation computers took up a
lot of space.

 They also consumed enormous amounts of power and generated a lot of
heat. In spite of housing these computers in air-conditioned enclosures,
frequent breakdowns were common.

 The ENIAC used 18,000 vacuum tubes, occupied 1800 sq. ft. of room space
and consumed 180KW of power.

Machines of this generation were prohibitively expensive to buy and
maintain.

 First-generation computers were programmed using a first-generation
language-machine language.

 Program input was provided by punched cards and output was obtained on
paper.

 First-generation computers were only used for scientific work and were not
deployed commercially.

Department of Information Science and Engg

Transform Here

Vacuum Tubes

Department of Information Science and Engg

Transform Here

Transistors: The Second Generation

Compared to vacuum tubes, transistors were faster, smaller and
consumed less power smaller magnetic cores also replaced the first-
generation magnetic drums.

Even though transistor generated less heat, second-generation
computers still needed air-conditioning.

The input-output mechanism however remained largely unchanged.

Second-generation computers were programmed using a symbolic
or assembly language.

The computers also implemented the stored program concept
which allowed both program and data to reside in memory.

Department of Information Science and Engg

Transform Here

Transistors: The Second Generation

Department of Information Science and Engg

Transform Here

Department of Information Science and Engg

Transform Here

Integrated Circuits: The Third Generation

By virtue of miniaturization, computers consequently got smaller,
cheaper and energy efficient. For these reasons, they could be seen
in several medium-sized organizations.

This generation adopted a keyboard and monitor to interact with
the user.

Memory capacity increased substantially and the magnetic hard
disk was used for secondary storage.

Third-generation computers also had an operating system, whichis
a special program meant to control the resources of thecomputer.

By virtue of a feature known as time sharing, the computercould
run programs invoked by multiple users.

The existing programming languages were supplemented by
BASIC, C, C++ and Java.

Department of Information Science and Engg

Transform Here

Integrated Circuits: The Third Generation

Department of Information Science and Engg

Transform Here

The Microprocessor: The Fourth Generation
 The integration of components went several steps ahead. Using LSI and

VLSI technology, it is now possible to have the entire CPU, its
associated memory and input/output control circuitry on a single chip.

 Intel introduced the 4004 microprocessor in 1971 and improvement in
the usual parameters (like speed, heat generation, size, etc.) continues
at a frenetic pace to this day.

Microprocessors have invaded our homes to drive desktops, laptops,
smartphones,microwave ovens and washing machines.

 Laptops and smartphones offer gigabytes (GB) of memory compared
to a few megabytes (MB) that were available in the early days of this
generation.

Operating systems have moved from the rudimentary MSDOS to a
mouse based Graphical User Interface (GUI) like Windows. More
advanced systems like Linux are now available for desktops and laptops,
and a variant of it (Android) powers most of our smartphones.

Department of Information Science and Engg

Transform Here

The Microprocessor: The Fourth Generation

Department of Information Science and Engg

Transform Here

Artificial Intelligence: The Fifth Generation

 The fifth generation represents a vision of the computers of the future. The
conventional parameters of computing (speed, size, energy consumption,
VLSI to UL.SI, etc.) would continue to improve path-breaking changes in
the way we use computers are also expected.

 Fifth-generation systems should be capable of producing human-like behaviour.
These systems expected to interact with users in natural language and learn from
experience. Speech recognition and speech output should also be possible with
these systems.

 Computer speeds need to make an exponential jump, a feat that would be
possible using quantum computers.

 Computers must be able to perform parallel processing so that multiple
processors concurrently handle different aspects of a problem.

 Neural networks and expert systems have to be developed. These applications
would be able to make decisions and advise humans by analysing data using
human-like intelligence but without using the services of an expert.

Department of Information Science and Engg

Transform Here

Department of Information Science and Engg

Transform Here

16

Types of Computers

Types of

Computers

Microcomputer Minicomputer Mainframe Supercomputer

Department of Information Science and Engg

Transform Here

17

1. Microcomputer

• Can be classified into:

•Desktop PCs
•sits on desks, rarely moved, large and
bulky.

•Memory capacity, graphics capacity and
software availability vary from one
computer to another Used both for
business and home applications

Department of Information Science and Engg

Transform Here

18

Microcomputer

•Portable PCs
•Can be moved easily from place to
place

•Weight may varies
•Small PCs are popular known as
laptop

•Widely used by students, scientist,
reporters, etc

Department of Information Science and Engg

Transform Here

19

Microcomputer Model

Desktop NotebookLaptop

Subnotebook Palmtop

http://images.google.com.ph/imgres?imgurl=http://img.alibaba.com/photo/11013976/Desktop_Computers.jpg&imgrefurl=http://www.alibaba.com/catalog/11013976/Desktop_Computers.html&h=389&w=540&sz=20&hl=en&start=1&tbnid=TUhiBz7AkAuChM:&tbnh=95&tbnw=132&prev=/images?q%3Ddesktop%2Bcomputers%26gbv%3D2%26svnum%3D10%26hl%3Den
http://images.google.com.ph/imgres?imgurl=http://img.alibaba.com/photo/11013976/Desktop_Computers.jpg&imgrefurl=http://www.alibaba.com/catalog/11013976/Desktop_Computers.html&h=389&w=540&sz=20&hl=en&start=1&tbnid=TUhiBz7AkAuChM:&tbnh=95&tbnw=132&prev=/images?q%3Ddesktop%2Bcomputers%26gbv%3D2%26svnum%3D10%26hl%3Den

Department of Information Science and Engg

Transform Here

20

Microcomputer

•Advantages
•Small size
•Low cost
•Portability
•Low Computing Power
•Commonly used for personal applications

•Disadvantages
•Low processing speed

Department of Information Science and Engg

Transform Here

21

Uses of Microcomputer

•Word Processing

•Home entertainment

•Home banking

•Printing

Department of Information Science and Engg

Transform Here

22

2. Minicomputer

• Medium sized computer

• Also called the minis
• e.g. IBM36, HP9000, etc

• Computing power lies between microcomputer and
mainframe computer

Department of Information Science and Engg

Transform Here

23

Department of Information Science and Engg

Transform Here

24

MiniComputer

•Characteristics
•Bigger size than PCs
•Expensive than PCs
•Multi-User
•Difficult to use
•More computing power than PCs
•Used by medium sized business organizations,
colleges, libraries and banks.

Department of Information Science and Engg

Transform Here

25

Uses of Minicomputer

• Control of Automated Teller Machine (ATMs)

• Hospital patients registration

• Inventory Control for supermarket

• Insurance claims processing

• Small bank accounting and customer details tracking

Department of Information Science and Engg

Transform Here

26

Minicomputer

•Advantage
•Cater to multiple users
•Lower costs than mainframes

•Disadvantage
•Large
•Bulky

Department of Information Science and Engg

Transform Here

27

3. Mainframe

• Known as enterprise servers

• Occupies entire rooms or floors

• Used for centralized computing

• Serve distributed users and small
servers in a computing network

Department of Information Science and Engg

Transform Here

28

Main Frame
• Large, fast and expensive computer

• Cost millions of dollar

• e.g. IBM3091, ICL39, etc

• Characteristics:
• Bigger in size than minicomputers Very expensive
• Support a few hundred users simultaneously (Multi-

Users)
• Difficult to use
• More computing power than minicomputers
• Have to be kept in a special air-conditioned room
• Used in big business organizations and government

departments

Department of Information Science and Engg

Transform Here

29

Department of Information Science and Engg

Transform Here

30

Department of Information Science and Engg

Transform Here

31

Mainframe

•Advantage
•Supports many users and instructions
•Large memory

•Disadvantage
•Huge size
•Expensive

Department of Information Science and Engg

Transform Here

32

Supercomputer

• Fastest and expensive

• Used by applications for
molecular chemistry, nuclear
research, weather reports, and
advanced physics

• Consists of several computers
that work in parallel as a single
system

Department of Information Science and Engg

Transform Here

33

Super Computer

• Advantage
• Speed

• Disadvantage
• Generate a large

amount of heat
during operation

Department of Information Science and Engg

Transform Here

Information Processing System

• DATA is a collection of independent and unorganized facts.

• INFORMATION is the processed and organized data presented in a
meaningful form.

• DATA PROCESSING is the course of doing things in a sequence of steps.

Department of Information Science and Engg

Transform Here

Information Processing System

• COMPUTER is an electronic machine that follows a set of instructions in
order that it may be able to accept and gather data and transform these
into information.

Department of Information Science and Engg

Transform Here

PROCESSING

SYSTEM

DATA
INFORMATION

Department of Information Science and Engg

Transform Here

Functions of an Information Processing
System

1. It accepts and gather data. (INPUT)

1. It processes data to become information. (PROCESSING)

2. It stores data and information. (STORE)

3. It presents information. (OUTPUT)

Department of Information Science and Engg

Transform Here

Three Major Components of an
Information Processing System

• HARDWARE is the tangible part of a computer system.

• SOFTWARE is the non-tangible part that tells the computer how to do its
job.

• PEOPLEWARE refer to people who use and operate the computer
system, write computer programs, and analyze and design the
information system.

Department of Information Science and Engg

Transform Here

Basic Units of Measurement

• BIT is a unit of information equivalent to the result of a choice between
only 2 possible alternatives in the binary number system.

• BYTE is a sequence of 8 bits (enough to represent one character of
alphanumeric data) processed as a single unit for information.

Department of Information Science and Engg

Transform Here

Basic Units of Measurement

•A byte can be used to represent a single
character, which can be:

•A letter
•A number
•A special character or symbol, or
•A space

Department of Information Science and Engg

Transform Here

Department of Information Science and Engg

Transform Here

BITS, BYTES AND WORDS
Unit Equivalent to Remarks

1 kilobyte (KB) 1024 bytes Space used by 10 lines of text.

I megabyte (MB) 1024 kilobytes Memory of the earliest PCs

1 gigabyte (GB) 1024 megabytes Storage capacity of a CD-ROM

I terabyte (TB) 1024 gigabytes Capacity of today's hard disks.

1 petabyte (PB) 1024 terabytes Space used for rendering of film Avatar

Department of Information Science and Engg

Transform Here

INSIDE THE COMPUTER

Department of Information Science and Engg

Transform Here

THE CENTRAL PROCESSING UNIT (CPU)

The CPU has evolved from a bulky vacuum tube
based unit of the 1940s to a modern 5cm square
chip that is commonly called the
microprocessor, or simple processor. It
comprises the following components

Arithmetic and Logic Unit (ALU)

Control Unit (CU)

Special purpose registers

A clock

Department of Information Science and Engg

Transform Here

PRIMARY MEMORY

The primary memory which includes the following
types:

Random Access Memory (RAM-SRAM and DRAM)

Read Only Memory (ROM, PROM, EPROM,
EEIROM)

Cache Memory (Li, L2 and L3)

CPU Registers

Department of Information Science and Engg

Transform Here

SECONDARY MEMORY

The last couple of decades have seen the emergence of
multiple types of storage devices.

Hard disk including the portable disk (500 GB to 4
TB).

Magnetic tape (20 TB).

CD-ROM (700 MB-less than 1 GB).

DVD-ROM (4.7 GB and 8.5 GB).

Blu-ray disk (27 GB and 50 GB).

Flash memory based on the EEPROM (1 GB to 128
GB).

The obsoleted floppy disk (1.2 MB and 1.44 MB).

Department of Information Science and Engg

Transform Here

The Hard Disk
• Every disk contains a spindle that holds one or more platters made of

non-magnetic material like glass or aluminium (Fig. 1.4). Each platter has
two surfaces coated with magnetic material.

• Information is encoded onto these platters by changing the direction of
magnetization using a pair of read-write heads available for each platter
surface.

• Eight surfaces require eight heads; they are mounted on a single arm and
cannot be controlled individually.

• Each surface is composed of a number of concentric and serially numbered
tracks.

• There are many tracks bearing the same track number as there are
surfaces. This can then visualize a cylinder comprising all tracks bearing
the same number on each disk surface.

• Thus, there will be as cylinders in the disk as there are tracks on each
usable surface.

 Each track is further broken into sectors or blocks. So, if each track has
32 blocks and a disk has eight surfaces, then Up 256 blocks per cylinder.

Department of Information Science and Engg

Transform Here

Department of Information Science and Engg

Transform Here

Magnetic Tape

 The age-old magnetic tape is still around thanks to the enhancements that have been
made to this device.

 The basic technology has not changed though; the tape is made of a plastic film with one
side coated with magnetic material.

 Current technology supports capacities of 1 TB or more, but 200 TB tapes are expected
to be launched in the near future.

 The device is portable though because a separate tape drive is required, and most
computers don't have one.

 Data are read from and written to the tape using a read-write head and an erasure head.

 The write operation is preceded by the erasing operation. The data access is sequential.
To locate a file, the tape has to be rewound before a sequential search can begin.

Department of Information Science and Engg

Transform Here

Optical Disks: The CD-ROM, DVD-ROM

 Non-volatile read-only memory, which we saw in the ROM family (including
PROM, EPROM and EEPROM), is also available on optical disks. These
disks, comprising mainly the CD-ROM and DVD-ROM, can hold large
volumes of data (700 MB to 8.5 GB) on inexpensive media.

 CD-R, DVD-R – Data can be recorded only once, CD-RW, DVD-RW – Data
can be recorded multiple times.

 The optical drive uses three motors for the following functions: operating
the tray, spinning the disk and guiding the laser beam.

Department of Information Science and Engg

Transform Here

Flash Memory
They are portable, need little power and are quite reliable.

The memory stick or pen drive is the most common type of flash
memory used on the computer.

The solid state disk (SSD) a bigger device meant to replacethe
traditional magnetic hard disk. Many small laptops (like Chrome
books) have the operating system and a small set of programs
stored on this online device.

The third device, the magnetic card, is used mainly in cameras,
but using adapters, they can connect to the USB port aswell.

The most popular form of this device is the micro-SD card, which is
available in SDHC and SDXC flavours. The SD card offer high
capacities that can go up to 128 GB.

Department of Information Science and Engg

Transform Here

Floppy Diskette

The floppy diskette was once the only form of
portable storage that could be carried in the pocket.

A read/write head actually makes contact with this
disk while it is rotating.

The floppy was available in two sizes (5.25" and
3.5"), offering capacities of 1.2 MB and 1.44 MB (yes,
MB not GB), respectively.

Department of Information Science and Engg

Transform Here

PORTS AND CONNECTORS
1. Universal Serial Bits (USB)

2. Serial port

3. Parallel port

4. Video Graphics Array (VGA) port

5. digital video interface (DVI)

6. PS(Personal System)/2 port

7. High Definition Multimedia Interface (HDMI)

Department of Information Science and Engg

Transform Here

INPUT DEVICES

1. The Keyboard

2. Pointing Devices

3. The Scanner

Department of Information Science and Engg

Transform Here

OUTPUT DEVICES
1. The Monitor
2. Impact Printers
▫ Dot-matrix Printer
▫ Daisy-wheel Printer
▫ Line Printer
3. Non-Impact Printers

Laser Printer
Ink-jet Printer

4. Plotters

Department of Information Science and Engg

Transform Here

Department of Information Science and Engg

Transform Here

COMPUTERS IN ANETWORK

• Interconnection of computer is called a
computer network.

• Different ways of connecting computers in
network is called as network topology.

Department of Information Science and Engg

Transform Here

Network Types

• Local Area Network (LAN)

• Wide Area Network (WAN)

• Technology advances have led to the birth of other types of
networks

• Metropolitan Area Network (MAN)

• Campus Area Network (CAN)

• Personal Area Network (PAN)

• The Internet and internet

Department of Information Science and Engg

Transform Here

NETWORK HARDWARE

• Network Interface Card

• Hub and Switch

• Bridge and Router

Department of Information Science and Engg

Transform Here

WHY COMPUTERS NEED SOFTWARE

Software is a collection of code that drives a computer to
perform a related group of tasks.

SOFTWARE TYPES

• System software

▫ Basic Input Output System (BIOS)

▫ Operating system

▫ Device driver

▫ Compilers and associated programs

• Application software

▫ Office software

▫ Database software

▫ Communications software

▫ Entertainment software

Department of Information Science and Engg

Transform Here

HISTORY OF C

Department of Information Science and Engg

Transform Here

BASIC STRUCTURE OF C PROGRAMS

Department of Information Science and Engg

Transform Here
63

C Syntax and Hello World

#include <stdio.h>

/* The simplest C Program */

Int main ()

{

printf(“Hello World\n”);

return 0;

}

The main() function is always

where your program starts

running.

#include inserts another file. “.h” files are called

“header” files. They contain stuff needed to interface to

libraries and code in other “.c” files.

This is a comment. The compiler ignores this.

Blocks of code (“lexical

scopes”) are marked by { … }

Print out a message. ‘\n’ means “new line”.Return ‘0’ from this function

Department of Information Science and Engg

Transform Here
64

Writing and Running Programs
#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

printf(“Hello World\n”);

return 0;

}

1. Write text of program (source code) using an editor

such as vi, gedit, save as file e.g. programname.c

2. Run the compiler to convert program from source to

an “executable” or “binary”:

$ cc programname.c

program

$ cc program name.c

tt.c: In function `main':

tt.c:6: parse error before `x'

tt.c:5: parm types given both in parmlist and separately

tt.c:8: `x' undeclared (first use in this function)

tt.c:8: (Each undeclared identifier is reported only once

tt.c:8: for each function it appears in.)

tt.c:10: warning: control reaches end of non-void function

tt.c: At top level:

tt.c:11: parse error before `return'

3. Compiler gives errors and warnings; edit source file,

fix it, and re-compile

4. Run it and see if it works

$./a.out

Hello World

$ ▌

Department of Information Science and Engg

Transform Here
65

OK, We’re Back.. What is a Function?

#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

printf(“Hello World\n”);

return 0;

}

Function Arguments

Return type, or void

Calling a Function: “printf()” is just

another function, like main(). It’s defined

for you in a “library”, a collection of

functions you can call from your program.

A Function is a series of instructions to run. You pass

Arguments to a function and it returns a Value.

“main()” is a Function. It’s only special because it

always gets called first when you run your program.

Returning a value

Department of Information Science and Engg

Transform Here

Department of Information Science and Engg

Transform Here

EXECUTING A ‘C’PROGRAM

Department of Information Science and Engg

Transform Here

Queries?

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Module-2
Managing input/output

Decision Making & Branching

Swetha M S

Dept of ISE

BMSIT&M

5-1

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Looping statements

• Loop is a control structure that repeats a group
of steps in a program.

– Loop body stands for the repeated statements.

• There are three C loop control statements:

–while, do-while and for.

5-2

BMS Institute of Technology & MgmtDepartment of ISE

Comparison of Loop Choices (1/2)

Kind When to Use C Structure

Counting loop We know how many loop

repetitions will be needed

in advance.

while, for

Sentinel-

controlled loop

Input of a list of data ended

by a special value

while, for

End file-

controlled loop

Input of a list of data from

a data file

while, for

5-3

BMS Institute of Technology & MgmtDepartment of ISE

Comparison of Loop Choices (2/2)

Kind When to Use C Structure

Input validation

loop

Repeated interactive input

of a value until a desired

value is entered.

do-while

General

conditional

loop

Repeated processing of

data until a desired

condition is met.

while, for

5-4

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

The while Statement in C

• The syntax of while statement in C:

while (loop repetition condition)

{ statements; }

• Loop repetition condition is the condition
which controls the loop.

• The statement is repeated as long as the loop
repetition condition is true.

• A loop is called an infinite loop if the loop
repetition condition is always true.

5-5

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Flow diagram –while loop

5-6

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Check the given number is palindrome or not
int main()

{ int n,temp,digit,rev=0;

printf("enter a integer number\n");

scanf("%d",&n);
temp=n;
while (n!=0)
{ digit=n%10;

n=n/10;

rev=digit+10*rev;

} // while ends

if(temp==rev)

{

printf("%d is a PALINDROME\n",temp);

} // if ends

else

{ printf("%d is not a PALINDROME\n",temp); }

return 0;

}
5-7

BMS Institute of Technology & MgmtDepartment of ISE

WAP to check whether the given number is armstrong or not
def: if the given number is equal to the sum of the cubes of individual digits
then it is known as armstrong ex: 407,153= 1 + 125 + 27 = 153

if (m==s)

printf("The number is Armstrong");

else

printf("The number is not a
Armstrong");

getch();

}

#include<stdio.h>

int main()

{

int r,s=0,n,m;

printf("Enter a number");

scanf("%d",&n);

m=n;

while(n>0)

{

r=n%10;

n=n/10;

s=s+(r*r*r);

}
5-8

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

The do-while Statement in C

• The syntax of do-while statement in C:

do

statement
while (loop repetition condition);

• The statement is first executed.

• If the loop repetition condition is true, the
statement is repeated.

• Otherwise, the loop is exited.

5-9

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Flow diagram do-while loop

5-10

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Example –do while
(input validation loop)

#include <stdio.h>
int main()

{ int sum=0,num;
do
{
printf("Enter a number\n");
scanf("%d",&num);
sum+=num;

} while(num!=0);
printf("sum=%d",sum);

return 0;
}

5-11

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

An Example of the do-while Loop

/* Find even number input */

do{

printf(“Enter a value: ”);

scanf(“%d”, &num);

}while (num % 2 !=0)

5-12

This loop will repeat if the user

inputs odd number.

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Difference b/w while & do while
While Do while

1. Entry controlled loop 1. Exit Controlled loop

2. If the condition is FALSE , while
loop is never executed.

2. If the condition is FALSE also in do-
while loop, at least once statements can
be executed.

3. syntax:
while(condn)
{ stmts;}

3. Syntax
do
{ stmts;
}while(condn);

4. Flow diagram 4. Flow Diagram

5-13

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

The for Statement in C
• The syntax of for statement in C:

for (initialization ; condition ; update expr)

{ statements;

}

• The initialization expression set the initial value of the
loop control variable(using assignment operator =).

• The condition test the value of the loop control
variable(using Relational Operator).

• The update expression update the loop control
variable(using incr/decr operator).

5-14

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Flow diagram -for loop

5-15

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

for statement

for(i=0;i<=4;i++)

{

printf(“\t%d”,i)

}

printf(“\n for loop over”);

O/P

1 2 3 4 5

for loop over
5-16

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Comparison of 3 loops

For loop while Do while

for (n=1;n<=10;n++)
{

…………..
…………..

}

n=1;
while(n<=10)
{

…………..
…………..

n=n+1
}

n=1;
do
{

…………..
…………..

n=n+1;
}
while(n<=10);

5-17

BMS Institute of Technology & MgmtDepartment of ISE

C pgm to sum of first n natural numbers

#include <stdio.h>

int main()

{ int n, count, sum=0;

printf("Enter the value of
n.\n"); scanf("%d",&n);

for(count=1;count<=n;++count)

{ sum+=count; }

printf("Sum=%d",sum);

return 0; }

Output

Enter the value of n.
10

Sum=55

5-18

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

C pgm to find factorial of a given number

#include<stdio.h>

int main()

{

int i,f=1,num;

printf("Enter a number: ");

scanf("%d",&num);

for(i=1;i<=num;i++)

f=f*i;

printf("Factorial of %d is: %d",num,f);

return 0;

}
5-19

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Additional Features of for

• More than1 variable can be initialized

• More than 1 part for update expression
section

• Test condition can have any compound
relation

• More than 1 parts in each section will be
seperated by commas.

for(i=1,m=50; i<20 && sum <100; i++,m--)

5-20

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Additional Features of for

• We can also use expression in the initialization
and incr/decr part.

for(x=((m+n)/2;x>0;x=x/2)

• One or more sections can be omitted, if
necessary

m=5;
for(;m!=100;)
{ printf(“%d\n”, m);

m=m+5;
}

5-21

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Nested Loops
• Nested loops consist of an outer loop with one

or more inner loops.

• e.g.,

for (i=1;i<=100;i++){

for(j=1;j<=50;j++){

…

}

}

• The above loop will run for 100*50 iterations.
5-22

Inner loop

Outer loop

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Eg pgm using nested for loops

5-23

#include <stdio.h>
int main()
{
int I,j;
for(i=1;i<=3;i++)
{for(j=1;j<=3;j++)
printf(“i=%d \t j=%d”, i,j);

}return 0;
}

O/P

i=1 j=1

i=1 j=2

i=1 j=3

i=2 j=1

i=2 j=2

i=2 j=3

i=3 j=1

i=3 j=2

i=3 j=3

Department of ISE Acharya Institute of Technology

C program to print Floyd's triangle:
#include <stdio.h>
int main()
{

int n, i, c, a = 1;
printf("Enter the number of rows of Floyd's triangle

to print\n");
scanf("%d", &n);
for (i = 1; i <= n; i++)

{
for (c = 1; c <= i; c++)
{

printf("%d ",a);
a++;

}
printf("\n");

}
return 0;
} 5-24

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Homework #4 (1/2)
• Write a program that prompts the user to input

an integer n.

• Draw a triangle with n levels by star symbols.
For example,

n = 3,

*
**

• After drawing the triangle, repeat the above
process until the user input a negative integer.

5-25

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Homework #4 (2/2)
• An usage scenario:

Please input: 2
*
**
Please input: 3
*
**

Please input: -9
Thank you for using this program.

5-26

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Unconditional control Transfer)

• C permits a jump from one statement to
another within a loop as well as the jump out
of a loop.

• 4 unconditional control statements are
available in C

– goto (branching statement)

– break (looping)

– continue (looping)

– return (used only in functions)
5-27

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

UNCONDITIONAL BRANCHING
STATEMENTS (goto)

• C supports the goto statement to branch
unconditionally from one point of the program to
another.

• The goto requires a label in order to identify the
place where the branch is to be made.

• A label is any valid variable name and must be
followed by a colon.

• The general form is

5-28

goto label;
.. .
label:

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

UNCONDITIONAL BRANCHING
STATEMENTS (goto)

5-29

Note: Don’t use 2 labels with same name

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Example for goto
#include<stdio.h>
#include<math.h>
main()
{
double x, y;
read:
printf(“Enter a No:”);
scanf(“%f”,&x);
if(x < 0)
goto read;
y = sqrt(x);
printf(“sqrt root of %f is %f \n”,x, y);
return 0;
}

5-30

BMS Institute of Technology & MgmtDepartment of ISE

Example-2

// pgm to print n natural numbers

#include<stdio.h>
#include<conio.h>
void main()
{
int n,i=1;
clrscr();
printf("Enter the final value");
scanf("%d",&n);
printf("The natural numbers
are \n");

natural:
if(i<=n)
{
printf("%5d",i); i++;
goto natural;
}
getch();
}

5-31

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Break statements

• The break command unconditionally stops the
execution of any loop in which it is
encountered, and goes to the next command
after the done.

• it is used to move the control outside of the
control statements.

• Syntax break;

5-32

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE 5-33

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Eg of break statment

main()
{
int t ;
for (; ;) // infinite loop
{
printf(“\nEnter a Value:”);
scanf("%d" , &t) ;
if (t==10)
break ;

}
printf("End of an infinite loop...\n");
} 5-34

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

NOTE: When the loops are nested, the break
would only exit from the loop containing it.

That is, the break will exit only a single loop.
for(…….)
{
…..
for(…..)

{
if(condn)
break;
}
….
}

5-35

Exit from inner loop

BMS Institute of Technology & MgmtDepartment of ISE

4. Evaluate polynomial using Horner’s method (LAB
pgm) f(x)=a4x4+a3x3+a2x2+a1x+a0

#include<stdio.h>
#include<conio.h>
void main()
{
int n,i,sum,a[10],x;
sum=0;
printf(“\nEnter the noof coefficients:");

scanf("%d",&n);
printf("Enter n+1 co-efficients: \n");

for(i=n;i>=0;i--)
{printf(“\na[%d]=“,i);
scanf("%d",&a[i]);
}
printf(“\nEnter the Value of x:");
scanf("%d",&x);
for(i=n;i>=0;i--)
{
sum=sum*x+a[i];
}
printf("Sum is %d",sum);
getch();
}

5-36

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

continue

Syntax: continue;

• The keyword continue allows us to take the
control to the beginning of the loop bypassing
the statements inside the loop which have not
yet been executed.

5-37

BMS Institute of Technology & MgmtDepartment of ISE

Pgm to show how continue works
#include<stdio.h>
main()
{
int i,j;
for(i = 1; i< = 2; i++)
{
for(j=1; j<=2; j++)
{
if (i= =j)
continue;
printf(“\n%d\t%d\n”, i,j);
}
}
return 0
}

Output

12

21

5-38

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Sum of positive elements
#include<stdio.h>
int main()
{
int a[5]={-1,2,-3,4,-5};
int i,sum=0;
for(i=0;i<5;i++)
{
if(a[i]<0)
continue;

sum+=a[i];
}
printf(“sum of positive elements: %d\n”, sum);
return 0;
}

5-39

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Difference b/w break & continue

S.No Break Continue

1. Appears both in switch
and loop(for, while ,do)
statements

Appears only in
loop(for,while,do) statements

2. Used to exit from the
loop immediately
skipping one or more
statements in the loop

Used to continue the loop,
skipping one or more
statements in the loop.

3. Syntax: break; Syntax: continue;

5-40

BMS Institute of Technology & MgmtDepartment of ISE

Module-3
Arrays

By
Prof Swetha M S
ISE-BMSIT&M

5-1

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Syllabus-Arrays

o Using an array

o Using arrays with Functions

o Multi-Dimensional arrays

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Arrays

Defn:

Array is a data structure that represents a
collection of elements of same data type. (derived
data type)

Syntax: datatype array_name[subsript/index/size];

Eg: int Num[3];
Num[0] Num[1] Num[2]

Array name: Num

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Need

• Easy to process large amount of data

Classification of Arrays

• Single (one) Dimensional

• Two dimensional

• Multidimensional

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Single dimensional Array

• Linear list consist of data items of same
type.

• In memory all data items stored in
continuous memory location.

eg. int a[3];

a[0] a[1] a[2]

1000 1002 1004 1005

10 20 30

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Properties of Array
1. Elements stored in array should be of same type

2. Elements are stored contiguously in memory.

3. Subscript of first item is always zero(if not specified)

4. Each data item is accessed using the name of the array

5. Index of the array is always an integer

eg. a[2] √ correct

a[2.5] X wrong

a[‘5’] √ correct it takes ASCII value of ‘5’

a[5+2] √ correct

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Declaration of one dimensional
Array

Syntax: Datatype array_name[index];

• int marks[5]; mem2* 5=10 bytes

• float avg [3]; mem4*3=12 bytes

• char name[5]; mem1*5=5 bytes

Declaration using Named constants

const int SIZE=5;

int a[SIZE];

Declaration using Symbolic Constants

#define SIZE 3;

int marks[2+SIZE];

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Storing values in Arrays
• Initialization

• Assigning values

• User input from keyboard

Initialization

data type
array_name[index]={v1,v2,…vn};

eg int a[5]= {10,20,30,40,50};

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Initialization
1. int a[3]={1,2,3,4,5} // Error number of values more than

the size of the array

2. char name[5]={‘K’, ‘U’, ‘M’, ‘A’,’R’};

3. int a[5]={10,20};

4. int a[]={10,20,30,40};

Array initialization with String
String is defined as sequence of character enclosed within
double quotes ends with NULL(\0) character.

Char b[]= “WELCOME” // array size is equal to size of string +1

W E L C O M E \0

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

• Note: Size of the array must be known
during compilation.

• Eg:
main()
{
int a[]; // error
a[1]=20;
…
}

BMS Institute of Technology & MgmtDepartment of ISE

User input for arrays

• Using loops

Reading array Input

for(i=0;i<=n-1;i++)

{

scanf(“%d”,&a[i]);

}

Displaying ouput array

for(i=0;i<=n-1;i++)

{

printf(“%d”,a[i]);

}

BMS Institute of Technology & MgmtDepartment of ISE

Bubble sort
#include<stdio.h>
#include<conio.h>
void main()
{
int n,i,j,a[10],temp;
clrscr();
printf("Enter the No. of Elements:\n");
scanf(“%d”,&n);
printf(“ Enter the array Elements:\n”);

for(i=0;i<n;i++)
{
printf("\t");
scanf("%d",&a[i]);
}
for(i=0;i<n-1;i++)
{
for(j=0;j<n-1+i;j++)

{
if(a[j]>a[j+1])
{
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
printf(“\nThe sorted elements are:\n");
for(i=0;i<n;i++)
{
printf("\t");
printf("%d",a[i]);
}
getch();
}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Output

Enter the No. of Elements: 5

Enter the array Elements:

5 3 1 2 4

The sorted elements are

1 2 3 4 5

BMS Institute of Technology & MgmtDepartment of ISE

Copy one array to another
array

#include<stdio.h>
int main() {

int arr1[30], arr2[30], i, num;
printf("\nEnter no of elements:");

scanf("%d", &num);
//Accepting values into Array

printf("\nEnter the values :");
for (i = 0; i < num; i++)

{
scanf("%d", &arr1[i]);

}

// Copying data from array 'a' to array 'b ‘

for (i = 0; i < num; i++)
{

arr2[i] = arr1[i];
}
//Printing of all elements of array

printf("The copied array is :");
for (i = 0; i < num; i++)

{
printf("\narr2[%d] = %d", i,arr2[i]);

}
return (0);

}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Output

Enter no of elements : 5

Enter the values : 11 22 33 44 55

The copied array is : 11 22 33 44 55

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

H/w

• average of array elements

• Find max value in an array

• Sum of odd and even numbers in an array

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Two dimensional arrays
• A two dimensional array stores data as a

logical collection of rows and columns.

• Also called arrays of arrays (matrix)

• Each element of a two-dimensional array has a
row position and a column position.

• Syntax:

– data type array_name[row][col];

– eg: int array[5][3];

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Creating/declaring 2-D arrays

int a[3][2];

a[0,0] a[0,1]

a[0,0]

a[1,0] a[1,1]

a[2,0] a[2,1]

• Row size and col size must be integers.

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Initializing 2D arrays
• int data[2][5]; //allocates consecutive memory for

10 integer values

Initialized directly in the declaration statement

• double t[2][2] = {{3.0,5.0},{2.1,7.2}};

//allocates and initializes

(Or)

t[0][0]= 3.0; t[0][1]=5.0; t[1][0]=2.1; t[1][1]=7.2

1 st row 2nd row

3.0 5.0 2.1 7.2

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

int c[][3] = { {1, 2, 3},

{4, 5, 6},

{7, 8, 9},

{10, 11, 12} };
Implicitly declares the number of rows to be 4.

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Input of Two-Dimensional Arrays
• Data may be input into two-dimensional

arrays using nested for loops interactively or
with data files.

for (i = 0; i < 2; i++)
{

for(j = 0; j < 3; j++)
{
scanf(“%d “, &a[i][j]);
}
printf(“\n”);

}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Output of Two-Dimensional Arrays

• Nested for loops are used to print the rows
and columns in row and column order.

int a[2][3] = {5, 6, 9, 4, 2, 10};

for (i = 0; i < 2; i++)

{
for(j = 0; j < 3; j++)
{
printf(“%d “, a[i][j]);
}
printf(“\n”);

}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Matrix addition
#include <stdio.h>

int main()

{

int m, n, c, d, first[10][10], second[10][10], sum[10][10];

printf("Enter the number of rows and columns of matrix\n");
scanf("%d%d", &m, &n);

printf("Enter the elements of first matrix\n");

for (c = 0; c < m; c++)

{

for (d = 0; d < n; d++)

{

scanf("%d", &first[c][d]);

}

}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

printf("Enter the elements of second matrix\n");
for (c = 0; c < m; c++)

for (d = 0 ; d < n; d++)
scanf("%d", &second[c][d]);

printf("Sum of entered matrices:-\n");
for (c = 0; c < m; c++)

for (d = 0 ; d < n; d++)
{

sum[c][d] = first[c][d] + second[c][d];
//Sum[0][0]=first[0][0]+sec[0][0]
//Sum[0][1]

printf("%d\t", sum[c][d]);
}

printf("\n");
}

return 0; }

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Matrix Multiplication
“For matrix multiplication, the number of columns in the first matrix

must be equal to the number of rows in the second matrix”

2x2 3x3

#include <stdio.h>

include<process.h>

int main()

{

int r1, c1,r2,c2 i, j,k, a[5][5], b[5][5], c[5][5];

printf("Enter the number of rows and columns of matrix A\n");

scanf("%d%d", &r1, &c1);

printf("Enter the number of rows and columns of matrix B\n");

scanf("%d%d", &r2, &c2);

if(c1!=r2)

{

printf(“Matrix Multiplication not possible\n”);

exit(0);

}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

else

{

printf("Enter the elements of first matrix\n");

for (i = 1; i < =r1; i++)

for (j = 1; j <= c1; j++)

scanf("%d", &a[i][j]);

printf("Enter the elements of second matrix\n");
for (i = 1; i <=r2; i++)

for (j = 1 ; j < =c2; j++)
scanf("%d", &b[i][j]);

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Department of ISE Acharya Institute of Technology

for(i=1;i<=r1;i++)

{

for(j=1;j<=c2;j++)

{

c[i][j]=0;

for(k=1;k<=c1;k++)

{

c[i][j]=c[i][j]+a[i][k]*b[k][j];

}

}

}

printf("The product of 2 Matrices are:\n");

for(i=1;i<=r1;i++)

{

for(j=1;j<=c2;j++)

{

printf("%d \t",c[i][j]);

}

printf(“\n”);

}

}

return 0;

}

Department of ISE Acharya Institute of Technology10/15/2015 30

BMS Institute of Technology & MgmtDepartment of ISE

Strings

Module-3

Prof. Swetha M S

Assistant Professor

ISE-BMSIT& M

5-1

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Strings
• A string is a array of characters enclosed with in double

quotes terminated with a null character(\0).

• The operations that are performed on character strings
are

 Reading and writing strings.

 Combining strings together.

 Copying one string to another.

 Comparing strings for equality.

 Extracting a portion of a string.

W E L C O M E \0

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Declaration of Strings

Syntax

char<var name>[array_length];

Eg:

char msg[6];

char str1[10],str2[10],…..;

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Initialization of Strings
Syntax

char str[size]=string constant;

char str[]=string constant;
Eg:

char msg[10]=“Hello”;

char msg [] = “ Hello”;

char msg[]={‘H’,’e’,’l’,’l’,’o’,’\0’};

H E L L O \0 \0 \0 \0 \0

H E L L O \0

H E L L O \0

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Reading and displaying strings

• Read a string scanf(), gets(), getchar()

• Display a string printf(), puts(), putchar()

i) Using scanf() and printf()

scanf(“%s”,&msg); format specifier is %s

printf(“ Hello”);

printf(“%s”, msg);

BMS Institute of Technology & MgmtDepartment of ISE

read and display string using scanf and
printf

#include<stdio.h>
int main()
{
char name[20]; // declaration of string;
printf(“\nEnter your name:”);
scanf(“%s”, &name); // & is optional for string
printf(“\nwelcome %s !!!\n”, name);
return 0;
}

Output1:
Enter your name: BMSIT
Welcome BMSIT!!!

Output2:
Enter your name: BMSIT BANGALORE
Welcome BMSIT !!!

BMS Institute of Technology & MgmtDepartment of ISE

Read and display string using gets
and puts function

#include<stdio.h>
#define size 20
int main()
{
char name[20];
printf(“Enter the name with space:”);
gets(name);
printf(“\nyou are:”);
puts(name);
return 0;
}

Output:

Enter the name with
space: dennis ritchie

You are : dennis ritchie

BMS Institute of Technology & MgmtDepartment of ISE

Difference between scanf()
and gets()

scanf()

1. Reads input till space, it omits
characters after blank space.

2.Syntax

scanf(“format specifier”, str_var);

3. eg:

char str[10];

scanf(“%s”, str);

gets()

1. Reads input including space till
enter key is pressed

2.Syntax

gets(str_var);

3. eg:

char str[10];

gets(str);

BMS Institute of Technology & MgmtDepartment of ISE

Read and display strings using
getchar() and putchar()

#include<stdio.h>
#define size 20
int main()
{
char name[20];
int i=0;
printf("enter the name :");
while((name[i]=getchar())!='\n')
{
i++;
}
name[i]='\0';

printf("you are:");
for(i=0;name[i]!='\0';i++)
putchar(name[i]);
return 0;
}

Output:

enter the name: BMSIT

You are: BMSIT

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Creating array of strings
#include<stdio.h>
#include<conio.h>
int main()
{
char days[7][10]={"Sunday","Monday",”Wednesday","Thursday","Friday","Saturday"};

for(i=0;i<7;i++)
{
printf("%s \t",days[i]);
}
getch();
return0;
}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

String Manipulation functions

#include<string.h>

String manipulation functions:

Function Work of Function

strlen() Calculates the length of string

strcpy() Copies a string to another string

strcat() Concatenates(joins) two strings

strcmp() Compares two string

strlwr() Converts string to lowercase

strupr() Converts string to uppercase

http://www.programiz.com/c-programming/library-function/strlen
http://www.programiz.com/c-programming/library-function/strcpy
http://www.programiz.com/c-programming/library-function/strcat
http://www.programiz.com/c-programming/library-function/strcmp
http://www.programiz.com/c-programming/library-function/strlwr
http://www.programiz.com/c-programming/library-function/strupr

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Strlen()
Syntax:

temp_variable = strlen(string_name);

Eg:

#include<stdio.h>

#include <string.h>

int main()

{

char a[20]="Program";

int length;

length=strlen(a);

printf("Length of string a=%d \n",length); //calculates the length of string before null

charcter.

return 0;

}

Output:

Length of string a=7

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Calculate the length of the string
without using string functions

#include <stdio.h>
int main()
{
char s[20];
int i;
printf("Enter a string: ");
scanf("%s",s);
for(i=0; s[i]!='\0'; ++i);

printf("Length of string: %d",i);
return 0;
}
Output:
Enter a string: welcome
Length of string:7

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

strcmp function

Syntax:

temp_varaible=strcmp(string1,string2);

• It compares the two strings and returns an
integer value.

• If both the strings are same (equal) then this
function would return 0

• otherwise it may return a negative or positive
value based on the comparison.

BMS Institute of Technology & MgmtDepartment of ISE

Eg for strcmp
#include <stdio.h>
#include <string.h>
int main()
{
char str1[30],str2[30];
printf("Enter first string: ");
gets(str1);
printf("Enter second string: ");
gets(str2);
if(strcmp(str1,str2)==0)

printf("Both strings are equal");
else

printf("Strings are unequal");
return 0;
}

Output1
Enter first string: Apple
Enter second string: Apple
Both strings are equal.

Output2
Enter first string: Apple
Enter second string: cat
strings are unequal.

BMS Institute of Technology & MgmtDepartment of ISE

Compare two string without strcmp()
#include<stdio.h>
int main() {
char str1[30], str2[30];
int i;
printf("\nEnter two strings :");

gets(str1);
gets(str2);
i = 0;

while (str1[i] == str2[i] && str1[i] != '\0')
i++;

if (str1[i] > str2[i])
printf("str1 > str2");

else if (str1[i] < str2[i])
printf("str1 < str2");

else
printf("str1 = str2");

return (0);
}

Output1:

Enter two strings:

apple

apple

str1=str2

Output2:

Enter two strings:

apple

cat

str1<str2

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

strcat

• strcat() concatenates(joins) two strings.

• It takes two arguments, i.e, two strings
and resultant string is stored in the first
string specified in the argument.

Syntax

• strcat(first_string,second_string);

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pgm for strcat
#include <stdio.h>
#include <string.h>
int main()
{
char s1[10] = "Hello";
char s2[10] = "World";
strcat(s1,s2);
printf("Output string after concatenation: %s", s1);
return 0;

}
Output:
Output string after concatenation: HelloWorld

BMS Institute of Technology & MgmtDepartment of ISE

Pgm to concatenate two strings
without strcat

#include <stdio.h>
int main()
{
char s1[10], s2[10], i, j;
printf("Enter first string: ");
scanf("%s",s1);
printf("Enter second string: ");
scanf("%s",s2);
for(i=0; s1[i]!='\0'; ++i); /* i contains length of string s1. */

for(j=0; s2[j]!='\0'; ++j, ++i)
{ s1[i]=s2[j]; }

s1[i]='\0';
printf("After concatenation: %s",s1);
return 0;
}

Output:

Enter first string: hello

Enter second string: world
The concatenated string is: helloworld

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Strcpy()

• Function strcpy() copies the content of one
string to the content of another string.

• It takes two arguments.

Syntax

• strcpy(destination,source);

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pgm for strcpy
#include <stdio.h>
#include <string.h>
int main()
{
char a[10],b[10];
printf("Enter string: ");
gets(a);
strcpy(b,a); //Content of string a is copied to string b.

printf("Copied string: ");
puts(b);
return 0;
}
Output:
Enter string: hai
Copied String: hai

BMS Institute of Technology & MgmtDepartment of ISE

Pgm to copy one string to another
without strcpy

#include <stdio.h>
int main()
{

char s1[10], s2[10], i;
printf("Enter string s1: ");
scanf("%s",s1);
for(i=0; s1[i]!='\0'; ++i)
{
s2[i]=s1[i];
}

s2[i]='\0';
printf("String s2: %s",s2);
return 0;
}

Output:

Enter String s1: hello

String s2: hello

BMS Institute of Technology & MgmtDepartment of ISE

Bubble sort
#include<stdio.h>
#include<conio.h>
void main()
{
int n,i,j,a[10],temp;
clrscr();
printf("Enter the No. of Elements:\n");
scanf(“%d”,&n);
printf(“ Enter the array Elements:\n”);

for(i=0;i<n;i++)
{
printf("\t");
scanf("%d",&a[i]);
}
for(i=0;i<n-1;i++)
{
for(j=0;j<n-1+i;j++)

{
if(a[j]>a[j+1])
{
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
printf(“\nThe sorted elements are:\n");
for(i=0;i<n;i++)
{
printf("\t");
printf("%d",a[i]);
}
getch();
}

BMS Institute of Technology & MgmtDepartment of ISE

BMS Institute of Technology & MgmtDepartment of ISE

Linear search, Binary Search
Bubble sort and Selection sort

Module-3

Prof. Swetha M S

Assistant Professor

ISE-BMSIT& M

5-1

BMS Institute of Technology & MgmtDepartment of ISE

Linear Search
#include<stdio.h>

int main()
{
int array[10], search, c, n;

printf("Enter number of elements in
array\n");

scanf("%d", &n);

printf("Enter %d integer(s)\n", n);

for (c = 0; c < n; c++)
scanf("%d", &array[c]);

printf("Enter a number to search\n");
scanf("%d", &search);

for (c = 0; c < n; c++)
{
if (array[c] == search)

/* If required element is found */
{

printf("%d is present at location
%d.\n", search, c+1);

break;
}

}
if (c == n)
printf("%d isn't present in the

array.\n", search);

return 0;
}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Output

Enter the No. of Elements: 4

Enter the array Elements:

11 5 77 32

Enter the elements to serach-77

Element found at position 3

BMS Institute of Technology & MgmtDepartment of ISE

Bubble sort
#include<stdio.h>
#include<conio.h>
void main()
{
int n,i,j,a[10],temp;
//clrscr();
printf("Enter the No. of Elements:\n");
scanf(“%d”,&n);
printf(“ Enter the array Elements:\n”);

for(i=0;i<n;i++)
{
printf("\t");
scanf("%d",&a[i]);
}
for(i=0;i<n-1;i++)
{
for(j=0;j<n-i-1;j++)

{
if(a[j]>a[j+1])
{
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
printf(“\nThe sorted elements are:\n");
for(i=0;i<n;i++)
{
printf("\t");
printf("%d",a[i]);
}
getch();
}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Output

Enter the No. of Elements: 5

Enter the array Elements:

5 1 4 2 8

The sorted elements are

1 2 4 5 8

BMS Institute of Technology & MgmtDepartment of ISE

Selection sort
#include <stdio.h>

int main()

{

int array[10], n, i, j, min, temp;

printf("Enter number of

elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (i = 0; i < n; i++)

scanf("%d", &array[i]);

for (i = 0; i < (n - 1); i++) // finding

minimum element (n-1) times

{

min = i;

for (j = i + 1; j < n; j++)

{

if (array[j]<array[min])

min = j;

}

}

t = array[i];
array[i] = array[min];
array[min] = t;

}
}

printf("Sorted list in ascending
order:\n");

for (i = 0; i< n; i++)
printf("%d\n", array[i]);

return 0;
}

•

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Output

Enter the No. of Elements: 5

Enter the array Elements:

5 7 4 8 1

The sorted elements are

1 4 5 7 8

BMS Institute of Technology & MgmtDepartment of ISE

Module-4
Functions

5-1

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Functions

• Function is a sub program or a self contained
block of statements used to perform a specific
task.

• Every C program contains at least one function
called main()

• Types of functions

– Built in functions functions provided by C compiler
eg: scanf(),printf(),sqrt(),sin()

– User defined functions functions defined by user eg:
main()

2

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Advantages of user defined
functions

• Provides modularity and thus reduces

complexity of the program

• avoids repetition of code

• Easy to debug/test the program

• Reduces time and cost (functions created for

one pgm can be reused to another pgm with

little or no modification)

3

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Function Definition
Syntax:

return_type function_name (param list)
{

declarations;
executable_statments;

}
Int add(int a, int b)
Note:
• A function can return only one value
• If the function returns no value then the return_type

would be void.
• If the return_type is not specified by default type is

int
4

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Function Definition- Contd

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Parameter list will take the following form

• type param1, type param2,….type param n
– Eg: int add(int a, int b)

• Data type to be specified for each
parameter

– int max(int a b,c) - wrong

– int max(int a, int b,int c) - correct

6

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Examples-Program

BMS Institute of Technology & MgmtDepartment of ISE

Location of Functions

// after the main

Include header files

Function prototype

main()

{

}

Function definition()

{

}

// before the main

Include header files

Function prototype

Function definition()

{

}

main()

{

}

BMS Institute of Technology & MgmtDepartment of ISE

Location of Functions

Pgm1.c

Include header files

Function prototype

main()

{

}

Pgm2.c

Function definition()

{

}

BMS Institute of Technology & MgmtDepartment of ISE

Location of Functions-After the main

BMS Institute of Technology & MgmtDepartment of ISE

Location of Functions-Before the main

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Actual and formal parameters

• Arguments/parameters appearing in function call is
called actual arguments/parameters

• Arguments/parameters appearing in function
definition is called formal arguments/parameters

• The number of actual and formal parameters must
be equal.

• Also the data types and the order of declaration of
formal and actual parameters must be the same.

12

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Actual and formal parameters

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

• Each function will have

– Function prototype

– Function call

– Function definition

– Int add(int a, int b)

• If function is defined after main, function prototype is
must .

• Function prototype tells the compiler which function is
used by the main what is its return type , number and
type of parameters.

• Name of parameters is optional in function prototype

• Function prototype should end with a semicolon

14

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Program to Print a sentence using

function

#include<stdio.h>

void display(); //function declaration

void main()

{

display(); //function call

}

void display() //function definition

{

printf("C Programming");

return;

}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

#include<stdio.h>

int add(int , int); // function prototype

int main()

{

int a=5,b=10;

add(a, b); // function call

}

int add(int m, int n) // function definition

{

int m,n,y;

Y= m+ n;

return(y);

}

16

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Simple program using functions
#include<stdio.h>

int add(int,int); // function prototype

int main()

{

int mark1=50,mark2=40,tot;

tot=add(mark1,mark2); // function call mark1,mark2 actual arguments

printf(“the total is %d\n”,tot);

return 0;

}

int add(int a,int b) // function defintion a,b formal parameters

{

int c;

c=a+b;

return (c); // returns the value of c to the variable tot

} 17

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Note :

number of arguments, type of arguments, return
type in function prototype should match with
function defintion

int max(int a, int b); // fn prototype

main()

{ …

max(x,y); // function call

}

int max(float a, float b, int c) // fn defn

{

} //This is wrong

18

BMS Institute of Technology & MgmtDepartment of ISE

Module-4
Functions

5-19

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Types of User-defined Functions in C
Programming

• Function with no arguments and no return value

• Function with no arguments and a return value

• Function with arguments and no return value

• Function with arguments and a return value.

https://www.programiz.com/c-programming/types-user-defined-functions#no_no
https://www.programiz.com/c-programming/types-user-defined-functions#no_yes
https://www.programiz.com/c-programming/types-user-defined-functions#yes_no
https://www.programiz.com/c-programming/types-user-defined-functions#yes_yes

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Function with arguments and a return value.

https://www.programiz.com/c-programming/types-user-defined-functions#yes_yes

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Function with arguments and no return value

https://www.programiz.com/c-programming/types-user-defined-functions#yes_no

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Function with no arguments and a return value

https://www.programiz.com/c-programming/types-user-defined-functions#no_yes

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Function with no arguments and no return value

https://www.programiz.com/c-programming/types-user-defined-functions#no_no

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Types of User-defined Functions in C
Programming-example-2

• Function with no arguments and no return value

• Function with no arguments and a return value

• Function with arguments and no return value

• Function with arguments and a return value.

https://www.programiz.com/c-programming/types-user-defined-functions#no_no
https://www.programiz.com/c-programming/types-user-defined-functions#no_yes
https://www.programiz.com/c-programming/types-user-defined-functions#yes_no
https://www.programiz.com/c-programming/types-user-defined-functions#yes_yes

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

No arguments passed and no return Value

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

No arguments passed but a return value

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Argument passed but no return value

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Argument passed and a return value

BMS Institute of Technology & MgmtDepartment of ISE

Module-4
Functions

5-30

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Argument Passing
Parameter passing mechanism

• Call by value

• Call by reference

Call by value:

When the value of the variable is passed during

function invocation is called call by value.

Call by reference:

When an address of the variable is passed during

function invocation is called call by reference.

31

BMS Institute of Technology & MgmtDepartment of ISE

Call by value
main ()
{
int a = 10, b=20;
swap(a,b);
printf (“\na = % d b = % d”, a,b);
}
swap(int x, int y)
{
int t;
t = x;
x = y;
y = t;
printf (“\n x = % d y = % d” , x, y);
}

Output

x = 20 y = 10

a =10 b =20

Note:

With this method the changes
made to the formal arguments
in the called function have no
effect on the values of actual
argument in the calling
function

32

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

CALL BY REFERENCE

• The addresses of actual arguments in the calling
function are copied into formal arguments of the
called function.

• This means that using these addresses we would
have an access to the actual arguments and
hence we would be able to manipulate them.

• Change in formal arguments affect the actual
arguments

33

BMS Institute of Technology & MgmtDepartment of ISE

Call by reference
main ()
{
int a = 10, b =20;
swap (&a, &b);
printf (“\n a = %d b= %d”, a, b);
}
swap (int *x, int * y)
{
int t;
t = *x
*x = *y;
*y = t;
printf(“\n x=%d y=%d”,*x,*y);
}

output
x=20 y=10
a = 20 b =10

34

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Passing entire array as
arguments#include <stdio.h>

float average(float a[]); // fn prototype
int main(){

float avg, c[]={23.4, 55, 22.6, 3, 40.5, 18};
avg=average(c); /* Only name of array is passed as argument in fn call. */
printf("Average age=%.2f",avg);
return 0;

}
float average(float a[]) // array var should be used as arg to receive the elements
{

int i;
float avg, sum=0.0;
for(i=0;i<6;++i){
sum+=a[i];

}
avg =(sum/6);
return avg;

} 35

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Passing arrays using Call by
value

#include <stdio.h>
disp(char ch) // display function definition
{

printf("%c ", ch);
}
int main()
{

char arr[] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'I', 'j'};
for (int x=0; x<=10; x++)
{

/* passing each element one by one using subscript*/
disp (arr[x]); // fn call

}

return 0;
}

36

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Passing array using call by
reference

#include <stdio.h>
disp(int *num)
{

printf("%d ", *num);
}
int main()
{

int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};
for (int i=0; i<=10; i++)

{ /* passing element’s address*/
disp (&arr[i]);

}
return 0;

}

BMS Institute of Technology & MgmtDepartment of ISE

Sorting of elements using functions

#include<stdio.h>
void bubble_sort(int a[],int n)
{

int i,j,temp;
for(i=0;i<n-1;i++)
{

for(j=0;j<n-(i+1);j++)
{

if(a[j]>a[j+1])
{

temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;

}
}

}
}

int main()
{

int a[10],i,n;
printf("enter num of elements\n");
scanf("%d",&n);
printf("enter the elements of array\n");

for(i=0;i<n;i++)
scanf("%d",&a[i]);

bubble_sort(a,n);
printf("the sorted array is \n");
for(i=0;i<n;i++)

printf("%d\n",a[i]);
return 0;

}

BMS Institute of Technology & MgmtDepartment of ISE

Passing Multidimensional array to functions

#include <stdio.h>

void Function(int c[2][2]); // prototype

int main()

{

int c[2][2],i,j;

printf("Enter 4 numbers:\n");

for(i=0;i<2;++i)

for(j=0;j<2;++j){

scanf("%d",&c[i][j]);

}

Function(c); // 2d array passed

return 0;

}

void Function(int c[2][2])

{

/* Instead to above line, void
Function(int c[][2]){ is also valid */

int i,j;

printf("Displaying:\n");

for(i=0;i<2;++i)

for(j=0;j<2;++j)

printf("%d\n",c[i][j]);

}

39

BMS Institute of Technology & MgmtDepartment of ISE

Module-4
Recursive Functions

5-40

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Recursion

• Recursive function is a function that calls itself from its
own body.

• The function keeps on calling itself till a particular
condition holds true.

• add(N+add(n-1))

Properties of Recursion

• There is a criteria or condition that governs the execution
of recursive function. Without this condition, it will work
in an endless manner. This condition is also called the
base case of recursion.

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pgm to calculate factorial using
recursion

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pgm to calculate factorial using
recursion

#include<stdio.h>

int factorial (int); //function prototyping
int main()

{ int num,result;
printf("\nEnter a number : ");
scanf("%d",&num);
result= factorial(num); // fn call

printf("\nFactorial of %d is %d",num,result);

return 0;

}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Continue..

int factorial(int value)
{

int ans;
if((value==0) || (value==1))
return(1);

else
ans = value* factorial(value-1);

//call to itself
return(ans);

}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Program for Sum of N number
With Recursive call

BMS Institute of Technology & MgmtDepartment of ISE

Fibonacci series using
Recursion

#include<stdio.h>

int fibbo(int x);

void main()

{

int n,i;

printf("Enter the number of

terms in series\n");
scanf("%d",&n);
printf("Fibonacci series:\n");
for(i=1;i<=n;i++)

printf("%ld\t",fibbo(i));

}

int fibbo(int x)

{ if(x==1 || x==0)

return 1;

else

{

return(fibbo(x-1)+ fibbo(x-2));

}

}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Void and parameter less functions

/*C program to check whether a number entered by user is
prime or not using function with no arguments and no return
value*/

#include <stdio.h>
void prime(); // fn prototype no parameter no return

int main()
{
prime(); //No argument is passed to prime()
return 0;
}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

void prime()

{ /* There is no return value to calling function main(). Hence,
return type of prime() is void */

int num,i,flag=0;

printf("Enter positive integer enter to check: \n");

scanf("%d",&num);

for(i=2;i<=num/2;++i)

{

if(num%i==0)

{

flag=1;

}

}

if (flag==1)

printf("%d is not prime",num); else printf("%d is prime",num); }

BMS Institute of Technology & MgmtDepartment of ISE

Lab Program-12
Square Root of Given Number

5-49

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Lab Program-12
• Develop a program to find the square root of

a given number N and execute for all possible
inputs with appropriate messages.

• Note: Don’t use library function sqrt(n).

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

BMS Institute of Technology & MgmtDepartment of ISE

Lab Program-15
Binary to Decimal Conversion

5-55

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

BMS Institute of Technology & MgmtDepartment of ISE

•Purpose: This program demonstrates RECURSION.

•Procedure: Input binary number and call the recursive
function convert for translating binary number to
decimal number.

•Input: A binary number bin.

•Expected Output: Decimal number

5-56

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Implement Recursive functions for
Binary to Decimal Conversion

#include <stdio.h>

int convert(int);

int main()

{

int dec, bin;

printf("Enter a binary number: ");

scanf("%d", &bin);

dec = convert(bin);

printf("The decimal equivalent of %d is %d.\n", bin,dec);

return 0;

}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Implement Recursive functions for Binary
to Decimal Conversion

int convert(int bin)

{

if (bin == 0)

{

return 0;

}

else

{

return (bin % 10 + 2 * convert(bin / 10));

}

}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

BMS Institute of Technology & MgmtDepartment of ISE

Lab Program-9
Compute Sin(x) using Taylor series

approximation

5-62

Prof. Swetha M S
Assistant Professor
ISE-BMSIT& M

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Evaluating Sin(x) values without
build in function and comparing
result with build in function

• Develop a Program to compute Sin(x) using
Taylor series approximation .Compare your
result with the built- in Library function. Print
both the results with appropriate messages

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Program
/* Program to calculate sine value of given angle */
#include<stdio.h>
#include<conio.h>
#include<math.h>
#define PI 3.142

int main()
{
int i, degree;
float x, sum=0,term,nume,deno;
clrscr();
printf("Enter the value of degree");
scanf("%d",°ree);
x = degree * (PI/180); //converting degree into radian
nume = x;
deno = 1;
i=2;

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Program
do
{
//calculating the sine value.
term = nume/deno;
nume = -nume*x*x;
deno = deno*i*(i+1);
sum=sum+term;
i=i+2;
} while (fabs(term) >= 0.00001); // Accurate to 4 digits
printf("The sine of %d is %.3f\n", degree, sum);
printf("The sine function of %d is %.3f", degree, sin(x));
return 0;
}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Program

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Program

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Program

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Program

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Program

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Program

BMS Institute of Technology & MgmtDepartment of ISE

Module-5

C Pointers

Prof. Swetha M S

ISE-BMSIT&M

.

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

OBJECTIVES
• Pointer variable definitions and initialization

• Pointer operators

• Passing arguments to functions by reference

• Pointer expressions and pointer arithmetic

• Relationships between pointers and arrays

• Array of pointers

• Character pointer and functions

• Pointer to pointer

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pointer Variable Definitions and
Initialization

• Contain memory addresses as their values

• Normal variables contain a specific value (direct reference)

Defn

• A pointer is a variable which contains the address of a variable that has a
specific value (indirect reference)

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pointer Variable Definitions and
Initialization

• Pointer definitions

– * used with pointer variables

int *myPtr;

– Defines a pointer to an int (pointer of type int *)

– Multiple pointers require using a * before each variable
definition

int *myPtr1, *myPtr2;

– Can define pointers to any data type

– Initialize pointers to 0, NULL, or an address

• 0 or NULL – points to nothing

• 0 is the only integer value that can be assigned directly to a
pointer variable.

• Initializing a pointer to 0 is equivalent to initializing a pointer to
NULL, but NULL is preferred

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pointer Operators

• & (address operator)

– Returns address of operand

int y = 5;

int *yPtr;

yPtr = &y; /* yPtr gets address of y */

yPtr “points to” y

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pointer Operators
• * (indirection/dereferencing operator)

– Returns a synonym/alias of what its operand
points to

– *yptr returns y (because yptr points to y)

– * can be used for assignment

• Returns alias to an object
yptr = 7; / changes y to 7 */

– Dereferenced pointer (operand of *) must be an
lvalue (no constants)

• * and & are inverses

– They cancel each other out

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

 1

 2 /*Using the & and * operators */

 3 #include <stdio.h>

 4

 5 int main(void)

 6 {

 7 int a; /* a is an integer */

 8 int *aPtr; /* aPtr is a pointer to an integer */

 9

10 a = 7;

11 aPtr = &a; /* aPtr set to address of a */

12

13 printf("The address of a is %p"

14 "\nThe value of aPtr is %p", &a, aPtr);

15

16 printf("\n\nThe value of a is %d"

17 "\nThe value of *aPtr is %d", a, *aPtr);

18

19 printf("\n\nShowing that * and & are complements of "

20 "each other\n&*aPtr = %p"

21 "\n*&aPtr = %p\n", &*aPtr, *&aPtr);

22

23 return 0; /* indicates successful termination */

24

25 } /* end main */

 fig07_04.c

(1 of 2)

If aPtr points to a, then &a and

aPtr have the same value.

a and *aPtr have the same value

&*aPtr and *&aPtr have the same value

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

The address of a is 0012FF7C

The value of aPtr is 0012FF7C

The value of a is 7

The value of *aPtr is 7

Showing that * and & are complements of each other.

&*aPtr = 0012FF7C

*&aPtr = 0012FF7C

 fig07_04.c

(2 of 2)

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Calling Functions by Reference
• Call by reference with pointer arguments

– Pass address of argument using & operator

– Allows you to change actual location in memory

– Arrays are not passed with & because the array name is
already a pointer

• * operator
– Used as alias/nickname for variable inside of function

void double(int *number)

{

*number = 2 * (*number);

}

– *number used as nickname for the variable passed

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

/*Cube a variable using call-by-value */
#include <stdio.h>
int cubeByValue(int n); /* prototype */
int main(void)
{

int number = 5;
printf("The original value of number is %d", number);

/* pass number by value to cubeByValue */
number = cubeByValue(number);
printf("\nThe new value of number is %d\n", number);
return 0;

}
int cubeByValue(int n)

{
return n * n * n;

}

The original value of number is 5
The new value of number is 125

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Call-by-reference with a pointer
argument

#include <stdio.h>
void cubeByReference(int *nPtr); /* prototype */
int main(void)
{

int number = 5;
printf("The original value of number is %d", number);
/* pass address of number to cubeByReference */
cubeByReference(&number);

printf("\nThe new value of number is %d\n", number);
return 0;
}

void cubeByReference(int *nPtr)
{
*nPtr = *nPtr *x*nPtr x *nPtr; /* cube *nPtr */

}

Function prototype takes a pointer argument

Function cubeByReference is

passed an address, which can be

the value of a pointer variable

In this program, *nPtr is

number, so this statement

modifies the value of
number itself.

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Analysis of A Typical Call-by-Value

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Analysis of A Typical Call-by-Reference

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Bubble Sort Using Call-by-
reference

• Implement bubblesort using pointers

– Swap two elements

– swap function must receive address (using &) of
array elements

• Array elements have call-by-value default

– Using pointers and the * operator, swap can switch
array elements

• Psuedocode
Initialize array

print data in original order

Call function bubblesort

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Bubble Sort Using Call-by-
reference

• Psuedocode
Initialize array

print data in original order

Call function bubblesort

print sorted array

Define bubblesort

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

 1 /* Fig. 7.15: fig07_15.c

 2 This program puts values into an array, sorts the values into

 3 ascending order, and prints the resulting array. */

 4 #include <stdio.h>

 5 #define SIZE 10

 6

 7 void bubbleSort(int * const array, const int size); /* prototype */

 8

 9 int main(void)

10 {

11 /* initialize array a */

12 int a[SIZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };

13

14 int i; /* counter */

15

16 printf("Data items in original order\n");

17

18 /* loop through array a */

19 for (i = 0; i < SIZE; i++) {

20 printf("%4d", a[i]);

21 } /* end for */

22

23 bubbleSort(a, SIZE); /* sort the array */

24

25 printf("\nData items in ascending order\n");

26

27 /* loop through array a */

28 for (i = 0; i < SIZE; i++) {

29 printf("%4d", a[i]);

30 } /* end for */

 fig07_15.c

(1 of 3)

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

31

32 printf("\n");

33

34 return 0; /* indicates successful termination */

35

36 } /* end main */

37

38 /* sort an array of integers using bubble sort algorithm */

39 void bubbleSort(int * const array, const int size)

40 {

41 void swap(int *element1Ptr, int *element2Ptr); /* prototype */

42 int pass; /* pass counter */

43 int j; /* comparison counter */

44

45 /* loop to control passes */

46 for (pass = 0; pass < size - 1; pass++) {

47

48 /* loop to control comparisons during each pass */

49 for (j = 0; j < size - 1; j++) {

50

51 /* swap adjacent elements if they are out of order */

52 if (array[j] > array[j + 1]) {

53 swap(&array[j], &array[j + 1]);

54 } /* end if */

55

56 } /* end inner for */

57

58 } /* end outer for */

59

60 } /* end function bubbleSort */

 fig07_15.c

(2 of 3)

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pointer Expressions and Pointer
Arithmetic

• Arithmetic operations can be performed on
pointers

– Increment/decrement pointer (++ or --)

– Add an integer to a pointer(+ or += , - or -=)

– Pointers may be subtracted from each other

– Operations meaningless unless performed on an
array

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pointer Expressions and Pointer Arithmetic

• 5 element int array on machine with 4 byte
ints

– vPtr points to first element v[0]

• at location 3000 (vPtr = 3000)

– vPtr += 2; sets vPtr to 3008

• vPtr points to v[2] (incremented by 2), but the
machine has 4 byte ints, so it points to address 3008

| Array v and a pointer variable vPtr that points to v.

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

The pointer vPtr after pointer
arithmetic

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pointer Expressions and Pointer
Arithmetic

• Subtracting pointers

– Returns number of elements from one to the
other. If
vPtr2 = v[2];

vPtr = v[0];

– vPtr2 - vPtr would produce 2

• Pointer comparison (<, == , >)

– See which pointer points to the higher numbered
array element

– Also, see if a pointer points to 0

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pointer Expressions and Pointer
Arithmetic

• Pointers of the same type can be assigned to
each other

– If not the same type, a cast operator must be used

– Exception: pointer to void (type void *)

• Generic pointer, represents any type

• No casting needed to convert a pointer to void pointer

• void pointers cannot be dereferenced

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

OBJECTIVES

• Pointer variable definitions and initialization

• Pointer operators

• Passing arguments to functions by reference

• Using const qualifier with pointers

• Bubble sort using call-by-reference

• Sizeof operator

• Pointer expressions and pointer arithmetic

• Relationships between pointers and arrays

• Array of pointers

• Case study: Card shuffling and dealing simulation

• To use pointers to functions

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

The Relationship Between Pointers
and Arrays

• Arrays and pointers closely related

– Array name like a constant pointer

– Pointers can do array subscripting operations

• Define an array b[5] and a pointer bPtr

– To set them equal to one another use:
bPtr = b;

• The array name (b) is actually the address of first
element of the array b[5]
bPtr = &b[0]

• Explicitly assigns bPtr to address of first element of b

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

The Relationship Between Pointers
and Arrays

– Element b[3]

• Can be accessed by *(bPtr + 3)
– Where n is the offset. Called pointer/offset notation

• Can be accessed by bptr[3]
– Called pointer/subscript notation

– bPtr[3] same as b[3]

• Can be accessed by performing pointer arithmetic on
the array itself
*(b + 3)

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

 1 /* Fig. 7.20: fig07_20.cpp

 2 Using subscripting and pointer notations with arrays */

 3

 4 #include <stdio.h>

 5

 6 int main(void)

 7 {

 8 int b[] = { 10, 20, 30, 40 }; /* initialize array b */

 9 int *bPtr = b; /* set bPtr to point to array b */

10 int i; /* counter */

11 int offset; /* counter */

12

13 /* output array b using array subscript notation */

14 printf("Array b printed with:\nArray subscript notation\n");

15

16 /* loop through array b */

17 for (i = 0; i < 4; i++) {

18 printf("b[%d] = %d\n", i, b[i]);

19 } /* end for */

20

21 /* output array b using array name and pointer/offset notation */

22 printf("\nPointer/offset notation where\n"

23 "the pointer is the array name\n");

24

25 /* loop through array b */

26 for (offset = 0; offset < 4; offset++) {

27 printf("*(b + %d) = %d\n", offset, *(b + offset));

28 } /* end for */

29

 fig07_20.c

(1 of 3)

Array subscript notation

Pointer/offset notation

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

30 /* output array b using bPtr and array subscript notation */

31 printf("\nPointer subscript notation\n");

32

33 /* loop through array b */

34 for (i = 0; i < 4; i++) {

35 printf("bPtr[%d] = %d\n", i, bPtr[i]);

36 } /* end for */

37

38 /* output array b using bPtr and pointer/offset notation */

39 printf("\nPointer/offset notation\n");

40

41 /* loop through array b */

42 for (offset = 0; offset < 4; offset++) {

43 printf("*(bPtr + %d) = %d\n", offset, *(bPtr + offset));

44 } /* end for */

45

46 return 0; /* indicates successful termination */

47

48 } /* end main */

Array b printed with:

Array subscript notation

b[0] = 10

b[1] = 20

b[2] = 30

b[3] = 40
 (continued on next slide…)

 fig07_20.c

(2 of 3)

Pointer subscript notation

Pointer offset notation

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

 (continued from previous slide…)

Pointer/offset notation where

the pointer is the array name

*(b + 0) = 10

*(b + 1) = 20

*(b + 2) = 30

*(b + 3) = 40

Pointer subscript notation

bPtr[0] = 10

bPtr[1] = 20

bPtr[2] = 30

bPtr[3] = 40

Pointer/offset notation

*(bPtr + 0) = 10

*(bPtr + 1) = 20

*(bPtr + 2) = 30

*(bPtr + 3) = 40

 fig07_20.c

(3 of 3)

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

 1 /* Fig. 7.21: fig07_21.c

 2 Copying a string using array notation and pointer notation. */

 3 #include <stdio.h>

 4

 5 void copy1(char * const s1, const char * const s2); /* prototype */

 6 void copy2(char *s1, const char *s2); /* prototype */

 7

 8 int main(void)

 9 {

10 char string1[10]; /* create array string1 */

11 char *string2 = "Hello"; /* create a pointer to a string */

12 char string3[10]; /* create array string3 */

13 char string4[] = "Good Bye"; /* create a pointer to a string */

14

15 copy1(string1, string2);

16 printf("string1 = %s\n", string1);

17

18 copy2(string3, string4);

19 printf("string3 = %s\n", string3);

20

21 return 0; /* indicates successful termination */

22

23 } /* end main */

24

 fig07_21.c

(1 of 2)

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

25 /* copy s2 to s1 using array notation */

26 void copy1(char * const s1, const char * const s2)

27 {

28 int i; /* counter */

29

30 /* loop through strings */

31 for (i = 0; (s1[i] = s2[i]) != '\0'; i++) {

32 ; /* do nothing in body */

33 } /* end for */

34

35 } /* end function copy1 */

36

37 /* copy s2 to s1 using pointer notation */

38 void copy2(char *s1, const char *s2)

39 {

40 /* loop through strings */

41 for (; (*s1 = *s2) != '\0'; s1++, s2++) {

42 ; /* do nothing in body */

43 } /* end for */

44

45 } /* end function copy2 */

string1 = Hello

string3 = Good Bye

 fig07_21.c

(2 of 2)

Condition of for loop

actually performs an action

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Arrays of Pointers
• Arrays can contain pointers

• For example: an array of strings
char *suit[4] = { "Hearts", "Diamonds",

"Clubs", "Spades" };

– Strings are pointers to the first character

– char * – each element of suit is a pointer to a
char

– The strings are not actually stored in the array
suit, only pointers to the strings are stored

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pointers to Functions
• Pointer to function

– Contains address of function

– Similar to how array name is address of first
element

– Function name is starting address of code that
defines function

• Function pointers can be

– Passed to functions

– Stored in arrays

– Assigned to other function pointers

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pointers to Functions

• Example: bubblesort

– Function bubble takes a function pointer

• bubble calls this helper function

• this determines ascending or descending sorting

– The argument in bubble for the function pointer:
int (*compare)(int a, int b)

tells bubble to expect a pointer to a function that takes
two ints and returns an int

– If the parentheses were left out:
int *compare(int a, int b)

• Defines a function that receives two integers and
returns a pointer to a int

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Pointers to Functions
 1 /* Fig. 7.26: fig07_26.c

 2 Multipurpose sorting program using function pointers */

 3 #include <stdio.h>

 4 #define SIZE 10

 5

 6 /* prototypes */

 7 void bubble(int work[], const int size, int (*compare)(int a, int b));

 8 int ascending(int a, int b);

 9 int descending(int a, int b);

10

11 int main(void)

12 {

13 int order; /* 1 for ascending order or 2 for descending order */

14 int counter; /* counter */

15

16 /* initialize array a */

17 int a[SIZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };

18

19 printf("Enter 1 to sort in ascending order,\n"

20 "Enter 2 to sort in descending order: ");

21 scanf("%d", &order);

22

23 printf("\nData items in original order\n");

24

25 /* output original array */

26 for (counter = 0; counter < SIZE; counter++) {

27 printf("%5d", a[counter]);

28 } /* end for */

29

 fig07_26.c

(1 of 4)
bubble function takes a function

pointer as an argument

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

30 /* sort array in ascending order; pass function ascending as an

31 argument to specify ascending sorting order */

32 if (order == 1) {

33 bubble(a, SIZE, ascending);

34 printf("\nData items in ascending order\n");

35 } /* end if */

36 else { /* pass function descending */

37 bubble(a, SIZE, descending);

38 printf("\nData items in descending order\n");

39 } /* end else */

40

41 /* output sorted array */

42 for (counter = 0; counter < SIZE; counter++) {

43 printf("%5d", a[counter]);

44 } /* end for */

45

46 printf("\n");

47

48 return 0; /* indicates successful termination */

49

50 } /* end main */

51

 fig07_26.c

(2 of 4)

depending on the user’s choice, the bubble

function uses either the ascending or

descending function to sort the array

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

52 /* multipurpose bubble sort; parameter compare is a pointer to

53 the comparison function that determines sorting order */

54 void bubble(int work[], const int size, int (*compare)(int a, int b))

55 {

56 int pass; /* pass counter */

57 int count; /* comparison counter */

58

59 void swap(int *element1Ptr, int *element2ptr); /* prototype */

60

61 /* loop to control passes */

62 for (pass = 1; pass < size; pass++) {

63

64 /* loop to control number of comparisons per pass */

65 for (count = 0; count < size - 1; count++) {

66

67 /* if adjacent elements are out of order, swap them */

68 if ((*compare)(work[count], work[count + 1])) {

69 swap(&work[count], &work[count + 1]);

70 } /* end if */

71

72 } /* end for */

73

74 } /* end for */

75

76 } /* end function bubble */

77

 fig07_26.c

(3 of 4)

Note that what the program considers

“out of order” is dependent on the

function pointer that was passed to
the bubble function

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

78 /* swap values at memory locations to which element1Ptr and

79 element2Ptr point */

80 void swap(int *element1Ptr, int *element2Ptr)

81 {

82 int hold; /* temporary holding variable */

83

84 hold = *element1Ptr;

85 *element1Ptr = *element2Ptr;

86 *element2Ptr = hold;

87 } /* end function swap */

88

89 /* determine whether elements are out of order for an ascending

90 order sort */

91 int ascending(int a, int b)

92 {

93 return b < a; /* swap if b is less than a */

94

95 } /* end function ascending */

96

97 /* determine whether elements are out of order for a descending

98 order sort */

99 int descending(int a, int b)

100 {

101 return b > a; /* swap if b is greater than a */

102

103 } /* end function descending */

 fig07_26.c

(4 of 4)

Passing the bubble function ascending

will point the program here

Passing the bubble function descending

will point the program here

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Enter 1 to sort in ascending order,

Enter 2 to sort in descending order: 1

Data items in original order

 2 6 4 8 10 12 89 68 45 37

Data items in ascending order

 2 4 6 8 10 12 37 45 68 89

Enter 1 to sort in ascending order,

Enter 2 to sort in descending order: 2

Data items in original order

 2 6 4 8 10 12 89 68 45 37

Data items in descending order

 89 68 45 37 12 10 8 6 4 2

Prof. Swetha M S

Module-5
Structures in C

Department of ISE BMS Institute of Technology and Mgmt

Structures
Defn:

• Is a user defined data type used to store values of different data types
under a common name .

• Collection of data of same or different data type

Eg:

• Library info: (Acc no, title, author, pub, price..)

• Student info: (rno, name, DOB, addr, marks..)

Department of ISE BMS Institute of Technology and Mgmt

Declaring Structures

struct tag
{

//member declarations;
data_type member_var1;
data_type member _var2;
….

};
Eg:

struct person
{

char name[10];
int age;

};

Department of ISE BMS Institute of Technology and Mgmt

Defining structure variable

Note:
• Declaration of structure only list its members, it does not allocate any

memory for member variables.
• Memory is allocated only when member variables were defined.
Syntax 1:

struct tag var_list;
Eg:

struct person p1,p2;

Department of ISE BMS Institute of Technology and Mgmt

Syntax 2:
struct tag

{
member declarations;

} var_list;

Eg:
struct person
{

char name[10];
int age;

} p1,p2;

Department of ISE BMS Institute of Technology and Mgmt

Note:

It is possible to omit structure name while declaration. Such structures
are called anonymous structures.

Eg:

struct

{

char name[10];

int age;

} p1,p2;

Department of ISE BMS Institute of Technology and Mgmt

Initializing structure variables

• Each structure variable contains a copy of all members of the structure.

1. struct person p1={“ bala”, 24};

Department of ISE BMS Institute of Technology and Mgmt

Accessing structure members

• We can access structure members using dot operator(.)

Syntax

struct_var . member name

2. Second approach of initializing structure variables

struct person p1;

strcpy(p1.name,”bala”);

P1.age=24;

Eg pgm
#include<stdio.h>
main()
{

struct student
{
int rno;
char name[10];
int age;

char grade;
} s1;

s1.rno=101;
strcpy(s1.name,”james”);
s1.age=24;
s1.grade=‘A’;

printf(“\n student details\n”);

printf(“Rollno: %d”,s1.rno);

printf(“Name: %s”, s1.name);

printf(“Age: %d”, s1.age);

printf(“Grade: %c ”, s1.grade);

return 0;

}

OUTPUT:

student details

Rollno: 101

Name: james

Age: 24

Grade:A

Eg pgm
#include<stdio.h>
main()
{

struct student
{
int rno;
char name[10];
int age;

char grade;
} s1;

printf(“Enter Roll No:\n”);
scanf(“%d”, &s1.rno);
printf(“Enter Name :\n”);
gets(s1.name);
printf(“Enter Age:\n”);
scanf(“%d”, &s1.age);
printf(“Enter Grade:\n”);
scanf(“%c”, s1.grade);

printf(“\n student details\n”);

printf(“Rollno: %d”,s1.rno);

printf(“Name: %s”, s1.name);

printf(“Age: %d”, s1.age);

printf(“Grade: %c ”, s1.grade);

return 0;

}

OUTPUT:

student details

Rollno: 101

Name: james

Age: 24

Grade: A

Department of ISE BMS Institute of Technology and Mgmt

Nested Structures

• A structure inside another structure is called nested structure.

2 ways

1. The complete definition of a structure is placed inside the definition
of another structure.

2. Structures are defined separately and variable of structure type is
declared inside another structure.

Nested Structures

Ist Approach

struct student

{

int rno;

char name[20];

struct date

{

int day, month, year;

} dob;

} stud1;

2nd Approach
struct date

{

int day,month,year;

};

struct student

{

int rno;

char name[20];

struct date dob;

} stud1;

Department of ISE BMS Institute of Technology and Mgmt

Accessing nested structure

• If a structure A has another Structure B nested inside it
struct A
{

struct B
{
}b;

}a;

Then b data members can be accessed by a.b.data member

Eg
#include<stdio.h>
struct Address
{ char HouseNo[25];
char City[25];
char PinCode[25];
};
struct Employee
{ int Id;
char Name[25];
float Salary;
struct Address Add;
};

void main()

{

int i;

struct Employee E;

printf("\n\tEnter Employee Id : ");

scanf("%d", &E.Id);

printf("\n\tEnter Employee Name : ");

scanf("%s", &E.Name);

printf("\n\tEnter Employee Salary : ");
scanf("%f", &E.Salary);

Department of ISE BMS Institute of Technology and Mgmt

printf("\n\tEnter Employee House No : ");

scanf("%s",&E.Add.HouseNo);

printf("\n\tEnter Employee City : ");

scanf("%s",&E.Add.City);

printf("\n\tEnter Employee House No : ");

scanf("%s",&E.Add.PinCode);

printf("\nDetails of Employees");

printf("\n\tEmployee Id : %d",E.Id);

printf("\n\tEmployee Name : %s",E.Name);

printf("\n\tEmployee Salary : %f",E.Salary);

printf("\n\tEmployee House No : %s",E.Add.HouseNo);

printf("\n\tEmployee City : %s",E.Add.City);

printf("\n\tEmployee House No : %s",E.Add.PinCode);

}

Department of ISE BMS Institute of Technology and Mgmt

OUTPUT
Enter Employee Id : 101
Enter Employee Name : Suresh
Enter Employee Salary : 45000
Enter Employee House No : 4598/D
Enter Employee City : Delhi
Enter Employee Pin Code : 110056
Details of Employees
Employee Id : 101
Employee Name : Suresh
Employee Salary : 45000
Employee House No : 4598/D
Employee City : Delhi
Employee Pin Code : 110056

Department of ISE BMS Institute of Technology and Mgmt

Arrays of Structure
• Arrays of structure type is required when you need to apply the same

structure to a set of objects.

Syntax
struct student
{

int rno;
char name[20];

} stud[3]; // arrays of structure

Department of ISE BMS Institute of Technology and Mgmt

#include <stdio.h>
struct student
{

char name[50];
int roll;
float marks;

};

int main()
{
struct student s[10]; // Array of structure
int i;
printf("Enter information of students:\n");
for(i=0;i<10;++i)

{
s[i].roll=i+1;
printf("\nFor roll number %d\n",s[i].roll);

Department of ISE BMS Institute of Technology and Mgmt

printf("Enter name: ");
scanf("%s",s[i].name);
printf("Enter marks: ");
scanf("%f",&s[i].marks);
printf("\n");
}
printf("Displaying information of students:\n\n");
for(i=0;i<10;++i)
{

printf("\nInformation for roll number %d:\n",i+1);
printf("Name: ");
puts(s[i].name);

printf("Marks: %.1f",s[i].marks);
}
return 0;
}

Department of ISE BMS Institute of Technology and Mgmt

OUTPUT for Arrays of structure
Enter information of students:
For roll number 1
Enter name: Tom
Enter marks: 98

For roll number 2
Enter name: Jerry
Enter marks: 89
.
.
Displaying information of students:
Information for roll number 1:
Name: Tom
Marks: 98 . . .

Department of ISE BMS Institute of Technology and Mgmt

Structures and functions

In C, structure can be passed to functions by two methods:

• Pass by value (passing actual value as argument)

• Pass by reference (passing address of an argument)

Passing structure by value

A structure variable can be passed to the function as an
argument as normal variable.

If structure is passed by value, change made in structure variable
in function definition does not reflect in original structure
variable in calling function.

Department of ISE BMS Institute of Technology and Mgmt

Passing structure by reference

The address location of structure variable is passed to function
while passing it by reference.

If structure is passed by reference, change made in structure
variable in function definition reflects in original structure
variable in the calling function.

Department of ISE BMS Institute of Technology and Mgmt

Passing structure by value

#include <stdio.h>
struct student
{ char name[50]; int roll;
};
void Display(struct student stu);
/* function prototype should be below to the structure declaration otherwise
compiler shows error */
int main()
{ struct student s1;

printf("Enter student's name: ");
scanf("%s",&s1.name);
printf("Enter roll number:");
scanf("%d",&s1.roll);
Display(s1); // passing structure variable s1 as argument
return 0;

}

Department of ISE BMS Institute of Technology and Mgmt

void Display(struct student stu)

{

printf("\nName: %s",stu.name);

printf("\nRoll: %d",stu.roll);

}

OUTPUT

Enter student's name: Kevin

Enter roll number: 149

Name: Kevin

Roll: 149

Department of ISE BMS Institute of Technology and Mgmt

Passing structure by reference

#include <stdio.h>

struct distance

{ int feet;

float inch; };

void Add(struct distance d1,struct distance d2, struct distance
*d3);

int main()

{ struct distance dist1, dist2, dist3;

printf("First distance\n");

printf("Enter feet: ");

scanf("%d",&dist1.feet);

Department of ISE BMS Institute of Technology and Mgmt

printf("Enter inch: ");

scanf("%f",&dist1.inch);

printf("Second distance\n");

printf("Enter feet: ");

scanf("%d",&dist2.feet);

printf("Enter inch: ");

scanf("%f",&dist2.inch);

Add(dist1, dist2, &dist3);
/*passing structure variables dist1 and dist2 by value whereas
passing structure variable dist3 by reference */

printf("\nSum of distances = %d\'-%.1f \"",dist3.feet, dist3.inch);
return 0;

}

Department of ISE BMS Institute of Technology and Mgmt

void Add(struct distance d1,struct distance d2, struct distance *d3)

{

/* Adding distances d1 and d2 and storing it in d3 */

d3->feet=d1.feet+d2.feet;

d3->inch=d1.inch+d2.inch;

if (d3->inch>=12)

{ /* if inch is greater or equal to 12, converting it to feet. */

d3->inch-=12;

++d3->feet;

}

}

Department of ISE BMS Institute of Technology and Mgmt

OUTPUT

First distance

Enter feet: 12

Enter inch: 6.8

Second distance

Enter feet: 5

Enter inch: 7.5

Sum of distances = 18'-2.3"

Department of ISE BMS Institute of Technology and Mgmt

typedef

• Reserved keyword in c

• It allows you to create a new data type name for an existing data type.

• We can create a new data type name for primitive as well as user
defined data type.

Syntax:

typedef old_data_type new_data_type;

typedef
Eg1:

typedef int integer;
integer a,b,c;
integer a[10];

Typedef int raju
raju a;
Raju b;

Eg2:
struct emp
{
int emp_id;
char name[10];
};

typedef struct emp employee;

employee emp1,emp2;

Typedef egI

#include <stdio.h>

#include <string.h>

typedef struct Books

{

char title[50];

char author[50];

char subject[100];

int book_id;

} Book[10];

int main()

{

Book book[10];

strcpy(book.title, "C Programming");

strcpy(book.author, "Nuha Ali");

strcpy(book.subject, "C Programming”);
book.book_id = 6495407;

printf("Book title : %s\n", book.title);

printf("Book author : %s\n", book.author);

printf("Book subject : %s\n", book.subject);

printf("Book book_id : %d\n",book.book_id);

return 0;

}

Department of ISE BMS Institute of Technology and Mgmt

typedef vs #define

•#define is a C-directive which is also used to define
the aliases for various data types similar
to typedef but with the following differences −

–typedef is limited to giving symbolic names to types only
where as #define can be used to define alias for values as
well, you can define 1 as ONE etc.

–typedef interpretation is performed by the compiler
whereas #define statements are processed by the pre-
processor.

Department of ISE BMS Institute of Technology and Mgmt

Unions

• Unions are similar to structures used to store values of different data
types.

union tag_name
{
data type1 var1;
data_type2 var2;

.

.
};

Department of ISE BMS Institute of Technology and Mgmt

Structure Union

1.The keyword struct is used to define a
structure

1. The keyword union is used to define a
union.

2. When a variable is associated with a
structure, the compiler allocates the memory
for each member. The size of structure is
greater than or equal to the sum of sizes of
its members. The smaller members may end
with unused slack bytes.

2. When a variable is associated with a union,
the compiler allocates the memory by
considering the size of the largest memory.
So, size of union is equal to the size of largest
member.

3. Each member within a structure is assigned
unique storage area of location.

3. Memory allocated is shared by individual
members of union.

4. The address of each member will be in
ascending order This indicates that memory
for each member will start at different offset
values.

4. The address is same for all the members of
a union. This indicates that every member
begins at the same offset value.

5 Altering the value of a member will not
affect other members of the structure.

5. Altering the value of any of the member
will alter other member values.

6. Individual member can be accessed at a
time

6. Only one member can be accessed at a
time.

7. Several members of a structure can
initialize at once.

7. Only the first member of a union can be
initialized.

Department of ISE BMS Institute of Technology and Mgmt

eg

struct stu
{

char c;
int l;
float p; // Total size: 7 bytes

};
union emp
{

char c[20];
int l;
float p; // total bytes : 4 bytes

};

Department of ISE BMS Institute of Technology and Mgmt

Lab Program -13. STRUCTURES

Implement structures to read, write, compute average-
marks and the students scoring above and below the
average marks for a class of N students

1) Program to maintain a record of student using structure

#include <stdio.h>

struct student

{

char usn[50];

char name[50];

int marks;

} s[10];

Department of ISE BMS Institute of Technology and Mgmt

void main()
{
int i,n,countav=0,countbv=0; float sum,average;
clrscr();
printf("Enter number of Students\n"); scanf("%d",&n);
printf("Enter information of students:\n");

2)Storing information

for(i=0;i<n;i++)
{
printf("Enter USN: ");
scanf("%s",s[i].usn);
printf("Enter name: ");
scanf("%s",s[i].name);
printf("Enter marks: ");
scanf("%d",&s[i].marks);
printf("\n");
}

Department of ISE BMS Institute of Technology and Mgmt

3)displaying information

printf("Displaying Information:\n\n");

for(i=0; i<n; i++)

{

printf("\nUSN: %s\n",s[i].usn); printf("Name: ");

puts(s[i].name);

printf("Marks: %d",s[i].marks); printf("\n");

}

for(i=0;i<n;i++)

{

sum=sum+s[i].marks;

}

average=sum/n;

printf("\nAverage marks: %f",average);

Department of ISE BMS Institute of Technology and Mgmt

countav=0;

countbv=0;

for(i=0;i<n;i++)

{

if(s[i].marks>=average)

countav++;

else

}

countbv++;

printf("\nTotal No of students above average= %d",countav);
printf("\nTotal No of students below average= %d",countbv);

}

Department of ISE BMS Institute of Technology and Mgmt

Output

Prof. Swetha M S

Module-5

Department of ISE BMS Institute of Technology and Mgmt

OBJECTIVES

•Pointer variable definitions and initialization

•Pointer operators

•Passing arguments to functions by reference

•Pointer expressions and pointer arithmetic

•Relationships between pointers and arrays

•Array of pointers

•Character pointer and functions

•Pointer to pointer

Department of ISE BMS Institute of Technology and Mgmt

POINTERS

8/24/2020 43

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 44

Department of ISE BMS Institute of Technology and Mgmt

 1

 2 /*Using the & and * operators */

 3 #include <stdio.h>

 4

 5 int main(void)

 6 {

 7 int a; /* a is an integer */

 8 int *aPtr; /* aPtr is a pointer to an integer */

 9

10 a = 7;

11 aPtr = &a; /* aPtr set to address of a */

12

13 printf("The address of a is %p"

14 "\nThe value of aPtr is %p", &a, aPtr);

15

16 printf("\n\nThe value of a is %d"

17 "\nThe value of *aPtr is %d", a, *aPtr);

18

19 printf("\n\nShowing that * and & are complements of "

20 "each other\n&*aPtr = %p"

21 "\n*&aPtr = %p\n", &*aPtr, *&aPtr);

22

23 return 0; /* indicates successful termination */

24

25 } /* end main */

 fig07_04.c

(1 of 2)

If aPtr points to a, then &a and

aPtr have the same value.

a and *aPtr have the same value

&*aPtr and *&aPtr have the same value

Department of ISE BMS Institute of Technology and Mgmt

The address of a is 0012FF7C

The value of aPtr is 0012FF7C

The value of a is 7

The value of *aPtr is 7

Showing that * and & are complements of each other.

&*aPtr = 0012FF7C

*&aPtr = 0012FF7C

 fig07_04.c

(2 of 2)

Department of ISE BMS Institute of Technology and Mgmt

Pointers and functions

8/24/2020 47

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 48

Department of ISE BMS Institute of Technology and Mgmt

Cube a variable using call-by-value
#include <stdio.h>
int cubeByValue(int n); /* prototype */
int main(void)
{

int number = 5;
printf("The original value of number is %d", number);

/* pass number by value to cubeByValue */
number = cubeByValue(number);
printf("\nThe new value of number is %d\n", number);
return 0;

}
int cubeByValue(int n)

{
return n * n * n;

}

The original value of number is 5
The new value of number is 125

Department of ISE BMS Institute of Technology and Mgmt

Call-by-reference with a pointer argument
#include <stdio.h>
void cubeByReference(int *nPtr); /* prototype */
int main(void)
{

int number = 5;
printf("The original value of number is %d", number);
/* pass address of number to cubeByReference */

cubeByReference(&number);
printf("\nThe new value of number is %d\n", number);
return 0;

}
void cubeByReference(int *nPtr)
{
*nPtr = *nPtr x*nPtr x *nPtr; /* cube *nPtr */

}

Function prototype takes a pointer argument

Function cubeByReference is

passed an address, which can be

the value of a pointer variable

In this program, *nPtr is

number, so this statement

modifies the value of
number itself.

Department of ISE BMS Institute of Technology and Mgmt

Pointers and array

8/24/2020 51

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 52

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 53

Department of ISE BMS Institute of Technology and Mgmt

Pointers to Strings

8/24/2020 54

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 55

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 56

Department of ISE BMS Institute of Technology and Mgmt

Pointer to Pointer

8/24/2020 57

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 58

Department of ISE BMS Institute of Technology and Mgmt

Address arithmetic

8/24/2020 59

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 60

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 61

Department of ISE BMS Institute of Technology and Mgmt

Advantages and disadvantages

8/24/2020 62

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 63

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 64

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 65

Department of ISE BMS Institute of Technology and Mgmt

Lan Program 14- USE OF POINTERS

Develop a program using pointers to
compute the sum, mean and standard
deviation of all elements stored in an
array of n real numbers

8/24/2020 66

Department of ISE BMS Institute of Technology and Mgmt

The formula for standard deviation (SD)

• Step 1: Find the mean.

• Step 2: For each data point, find the square of its distance to the mean.

• Step 3: Sum the values from Step 2.

• Step 4: Divide by the number of data points.

• Step 5: Take the square root.

8/24/2020 67

Department of ISE BMS Institute of Technology and Mgmt

#include<stdio.h>

#include<conio.h>

#include<math.h>

int main()

{

float a[10], *ptr, mean, std, sum=0, sumstd=0;

int n,i;

clrscr();

printf("Enter the no of elements\n"); scanf("%d",&n);

printf("Enter the array elements\n"); for(i=0;i<n;i++)

{

scanf("%f",&a[i]);

}

ptr=a;
8/24/2020 68

Department of ISE BMS Institute of Technology and Mgmt

for(i=0;i<n;i++)

{

sum=sum+ *ptr; ptr++;

}

mean=sum/n; ptr=a;

for(i=0;i<n;i++)

{

sumstd=sumstd + pow((*ptr - mean),2);

ptr++;

}

std= sqrt(sumstd/n);

printf("Sum=%.3f\t",sum); printf("Mean=%.3f\t",mean);

printf("Standard deviation=%.3f\t",std);

return 0;

} 8/24/2020 69

Department of ISE BMS Institute of Technology and Mgmt8/24/2020 70

Department of ISE BMS Institute of Technology and Mgmt

Viva Question

1. Define pointer?

2. How do you declare a pointer variable?

3. What is * and &in pointer concept.

4. What are the advantages and disadvantages of using pointer?

5. Give the difference between static allocation and dynamic allocation of
memory space.

6. What is the effect of the ++ and --operators on pointer variable

7. Explain the pointers to arrays concept?

8/24/2020 71

BMS Institute of Technology & MgmtDepartment of ISE

Dynamic memory allocation

Prof Swetha M S

Assistant Professor

ISE-BMSIT&M

5-1

Module-5

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Types of memory allocation

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Static vs Dynamic Memory

AllocationDefinition

Static memory allocation is a method of

allocating memory, and once the memory is

allocated, it is fixed.

Dynamic memory allocation is a method of

allocating memory, and once the memory is

allocated, it can be changed.

Modification

In static memory allocation, it is not

possible to resize after initial allocation.

In dynamic memory allocation, the

memory can be minimized or maximize

accordingly.

Implementation

Static memory allocation is easy to

implement.

Dynamic memory allocation is complex

to implement.

Speed

In static memory, allocation execution is

faster than dynamic memory allocation.

In dynamic memory, allocation execution

is slower than static memory allocation.

Memory Utilization

In static memory allocation, cannot reuse

the unused memory.

Dynamic memory allocation allows

reusing the memory. The programmer can

allocate more memory when required .

He can release the memory when

necessary.

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Disadvantages of static memory
allocation

• The exact size of array is unknown untill the
compile time.

• The size of array you have declared initially can
be sometimes insufficient and sometimes more
than required.

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Dynamic memory allocation

• Dynamic memory allocation allows a program to
obtain more memory space, while running or to
release space when no space is required.

Functions defined in (stdlib.h)

• malloc-stands for memory allocation.

• calloc-stands for contiguous allocation.

• realloc-stands for reallocation

• free- to release the space

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Dynamic memory allocation
Functions

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

malloc ()
• The malloc() function returns a pointer to an

area of memory with size of byte size. If the
space is insufficient, allocation fails and returns
NULL pointer.

Syntax

• ptr=(cast-type*)malloc(byte-size)

Eg:

• ptr=(int*)malloc(100*sizeof(int));

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

calloc ()

• The name calloc stands for "contiguous allocation". The
only difference between malloc() and calloc() is that,
malloc() allocates single block of memory whereas
calloc() allocates multiple blocks of memory each of
same size and sets all bytes to zero.

Syntax

• ptr=(cast-type*)calloc(n,element-size);

Eg:

• ptr=(float*)calloc(25,sizeof(float));

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

realloc ()

• If the previously allocated memory using malloc
and calloc is insufficient or more than sufficient.
Then, you can change memory size previously
allocated using realloc()

Syntax

• ptr=realloc(ptr,newsize);

Eg:

• ptr=realloc(ptr,100*sizeof(char));

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

free

• Dynamically allocated memory with either
calloc() or malloc() does not get return on its
own. The programmer must use free() explicitly
to release space.

Syntax

• free(ptr);

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Example pgm using malloc
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int main()
{ char *mem_alloc; /* memory allocated dynamically */
mem_alloc = malloc(15 * sizeof(char));
if(mem_alloc== NULL)
{

printf("Couldn't able to allocate requested memory\n");
}

else
{
strcpy(mem_alloc,“hai hello ");
}

printf("Dynamically allocated memory content : %s\n", mem_alloc);
free(mem_alloc);
}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

O/P

• Dynamically allocated memory content: hai hello

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Example pgm using calloc
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int main()
{ char *mem_alloc; /* memory allocated dynamically */
mem_alloc = calloc(15, sizeof(char));
if(mem_alloc== NULL)
{

printf("Couldn't able to allocate requested memory\n");
}

else
{
strcpy(mem_alloc,“hai hello every one");
}

printf("Dynamically allocated memory content : %s\n", mem_alloc);
free(mem_alloc);
}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

O/P

• Dynamically allocated memory content:
hai hello every one

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Example program for realloc

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int main()
{ char *mem_alloc; /* memory allocated dynamically */
mem_alloc = malloc(20 * sizeof(char));
if(mem_alloc == NULL)
{
printf("Couldn't able to allocate requested memory\n");
}
else
{
strcpy(mem_alloc,“hai hello every one");
}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

printf("Dynamically allocated memory content : " \ "%s\n",
mem_alloc);
mem_alloc=realloc(mem_alloc,100*sizeof(char));
if(mem_alloc == NULL)
{
printf("Couldn't able to allocate requested memory\n");
}
else
{
strcpy(mem_alloc,"space is extended upto 100 characters");

}
printf("Resized memory : %s\n", mem_alloc);
free(mem_alloc);
}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

Output

• Dynamically allocated memory content: hai hello
every one

• Resized memory: space is extended upto 100
characters

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

To find sum of n elements entered by user. To perform this program, allocate
memory dynamically using malloc() function.

#include <stdio.h>
#include <stdlib.h>
int main()
{
int n,i,*ptr,sum=0;
printf("Enter number of elements: ");
scanf("%d",&n);
ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc
if(ptr==NULL)
{ printf("Error! memory not allocated.");
exit(0);
}

BMS Institute of Technology & MgmtDepartment of ISEDepartment of ISE

printf("Enter elements of array: ");
for(i=0;i<n;++i)

{

scanf("%d",ptr+i);

sum+=*(ptr+i);

}

printf("Sum=%d",sum);

free(ptr);

return 0;

}

